CDS&E: First Principles Prediction of Thermal Radiative Properties of Dielectric Materials
CDS
基本信息
- 批准号:2102645
- 负责人:
- 金额:$ 43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is funded by the Condensed-Matter-and-Materials-Theory program in the Division of Materials Research and by the programs in Computational and Data-Enabled Science and Engineering and Thermal Transport Processes in the Division of Chemical, Bioengineering, Environmental, and Transport Systems.Non-technical summaryThermal radiation plays a key role in a broad set of energy and thermal-management applications, including spacecraft, solar cells, and passive radiative cooling. These applications often require distinct selective radiative properties: high absorption of sunlight is needed for solar cells, while low absorption of sunlight and high emission of infrared light in the window of atmospheric transparency are desired for radiative cooling. By reflecting sunlight while radiating infrared light to space, radiative-cooling paints have been shown to cool surfaces to below the ambient temperature without any energy expenditure. Screening and designing such materials call for an understanding of how thermal radiative properties depend on the atomic structures of materials. However, methods and software tools for this purpose are generally lacking, and empirical trial-and-error approaches are still the mainstream. Therefore, the objectives of this project are to enhance theoretical and simulation methodologies that can predict thermal radiative properties of materials from their atomic structures and subsequently to develop and deploy an open-source code that will help other researchers model their own radiative materials. Moreover, the PI will use these tools to understand the atomistic origins of ultra-efficient radiative cooling in particle-matrix nanocomposites and employ machine learning to pursue high-throughput screening of a large number of materials including oxides, carbonates, and sulfates, aiming to discover better radiative-cooling materials. The work will lead to energy savings with significant promise for combating climate change. In parallel, this project will incorporate education and outreach efforts. Besides expanding the graduate and undergraduate curriculum on radiative materials, it will provide technologically attractive topics to broaden the participation from women and underrepresented groups in engineering and science.Technical summaryThe goals of this research are to develop first-principles methods for calculating thermal radiative properties, deploy an open-source code, and enable high-throughput screening of particle-matrix radiative cooling paints. Tailored thermal radiative properties are demanded in a broad set of energy and thermal-management applications. However, no open-source codes are available to predict infrared radiative properties of dielectric materials from first principles, hindering the understanding of radiative properties and the design of new radiative materials from atomic structures. Meanwhile, although encouraging progress has been made in first-principles prediction of radiative properties, additional important phonon-scattering processes as well as phonon renormalization need to be included. Such tools will be extremely beneficial for applications such as selecting radiative-cooling materials, which are currently studied on an empirical trial-and-error basis. In this project, the PI will address these urgent research needs via computation and data-enabled approaches. There are three specific research tasks: (1) enhancing the capabilities of first-principles prediction of thermal radiative properties beyond four-phonon scattering, by incorporating phonon renormalization, phonon-electron scattering, and phonon scattering with defects, impurities, and boundaries; (2) developing and deploying an open-source code for first-principles calculations of thermal radiative properties; and (3) coupling first-principles predictions, Monte-Carlo simulations, and machine learning to enable high-throughput screening of dielectric particle-polymer-matrix radiative-cooling paints. The project is expected to achieve unprecedented accuracy in predicting thermal radiative properties of dielectric materials from first principles and enabling researchers to screen or design thermal radiative materials via an open-source code. It has the potential to change the current trial-and-error practice not only for radiative-cooling nanocomposites but also for many other important radiative materials such as thermal barrier coatings, thermophotovoltaic emitters, and coatings for space missions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目由材料研究部的凝聚态物质和材料理论计划以及化学、生物工程、环境和运输系统司的计算和数据使能科学与工程和热传输过程计划资助。非技术概述热辐射在广泛的能源和热管理应用中发挥着关键作用,包括航天器、太阳能电池和被动辐射冷却。这些应用通常需要不同的选择性辐射特性:太阳能电池需要高吸收率的太阳光,而辐射冷却需要低吸收率的太阳光和在大气透明窗口的高红外光发射。通过反射太阳光,同时向太空辐射红外光,辐射冷却涂料已被证明可以将表面冷却到环境温度以下,而不会产生任何能量消耗。筛选和设计这类材料需要了解热辐射性质如何取决于材料的原子结构。然而,用于这一目的的方法和软件工具普遍缺乏,经验试错法仍然是主流。因此,该项目的目标是加强能够根据材料的原子结构预测材料热辐射性质的理论和模拟方法,并随后开发和部署一个开放源码,以帮助其他研究人员对自己的辐射材料进行建模。此外,PI将使用这些工具来了解颗粒基纳米复合材料中超高效辐射冷却的原子起源,并利用机器学习对包括氧化物、碳酸盐和硫酸盐在内的大量材料进行高通量筛选,旨在发现更好的辐射冷却材料。这项工作将带来能源节约,并对应对气候变化做出重大承诺。同时,该项目将纳入教育和外联工作。除了扩展辐射材料的研究生和本科生课程外,它还将提供具有技术吸引力的主题,以扩大女性和未被充分代表的群体对工程和科学的参与。技术概述本研究的目标是开发计算热辐射性能的第一原理方法,部署开放源代码,并使高通量筛选颗粒基辐射冷却涂料成为可能。在广泛的能源和热管理应用中需要量身定做的热辐射特性。然而,目前还没有开放源码可用于从第一性原理预测介电材料的红外辐射特性,这阻碍了人们对辐射特性的理解和从原子结构设计新的辐射材料。同时,尽管在辐射性质的第一性原理预测方面取得了令人鼓舞的进展,但还需要包括其他重要的声子散射过程以及声子重整化。这类工具将对选择辐射冷却材料等应用非常有益,目前这些材料是在经验试错的基础上进行研究的。在这个项目中,PI将通过计算和数据启用的方法来解决这些紧迫的研究需求。该中心有三项具体的研究任务:(1)通过纳入声子重整化、声子-电子散射以及带有缺陷、杂质和边界的声子散射,增强热辐射性质的第一性原理预测能力;(2)开发和部署用于热辐射性质第一性原理计算的开放源代码;以及(3)耦合第一性原理预测、蒙特卡罗模拟和机器学习,以便能够高通量筛选介电颗粒-聚合物基质辐射冷却涂料。该项目有望在根据第一性原理预测介电材料的热辐射特性方面达到前所未有的准确性,并使研究人员能够通过开放源代码筛选或设计热辐射材料。它不仅有可能改变目前辐射冷却纳米复合材料的反复试验的做法,而且还有可能改变许多其他重要的辐射材料,如热障涂层、热光电发射器和空间任务涂层。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Thin layer lightweight and ultrawhite hexagonal boron nitride nanoporous paints for daytime radiative cooling
- DOI:10.1016/j.xcrp.2022.101058
- 发表时间:2022-10
- 期刊:
- 影响因子:8.9
- 作者:Andrea Felicelli;Ioanna Katsamba;Fernando Barrios;Yun Zhang;Ziqi Guo;J. Peoples;G. Chiu;X. Ruan
- 通讯作者:Andrea Felicelli;Ioanna Katsamba;Fernando Barrios;Yun Zhang;Ziqi Guo;J. Peoples;G. Chiu;X. Ruan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiulin Ruan其他文献
Impacts of radiative cooling paints for COsub2/sub reduction and global warming mitigation
辐射冷却涂料对减少二氧化碳排放和缓解全球变暖的影响
- DOI:
10.1016/j.enbuild.2025.115458 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:7.100
- 作者:
Emily Barber;Navdeep Vansal;Ziqi Fang;Yu-Wei Hung;Joseph Peoples;Rebecca Ciez;Travis Horton;Xiulin Ruan - 通讯作者:
Xiulin Ruan
Electronic and phononic characteristics of high-performance radiative cooling pigments h-BN: A comparative study to BaSOsub4/sub
高性能辐射冷却颜料六方氮化硼(h - BN)的电子和声子特性:与硫酸钡(BaSO₄)的对比研究
- DOI:
10.1016/j.mtphys.2025.101721 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:9.700
- 作者:
Ziqi Guo;Ioanna Katsamba;Daniel Carne;Dudong Feng;Kellan Moss;Emily Barber;Ziqi Fang;Andrea Felicelli;Xiulin Ruan - 通讯作者:
Xiulin Ruan
Effects of nanolayer versus nanosphere morphologies on radiative cooling
- DOI:
10.1016/j.ijheatmasstransfer.2024.125902 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:
- 作者:
Ioanna Katsamba;Krutarth Khot;Andrea Felicelli;Xiulin Ruan - 通讯作者:
Xiulin Ruan
Glass‐Like Through‐Plane Thermal Conductivity Induced by Oxygen Vacancies in Nanoscale Epitaxial La0.5Sr0.5CoO3−δ
玻璃 — 类透 — 纳米级外延 La0.5Sr0.5CoO3 中氧空位引起的平面热导率 —
- DOI:
10.1002/adfm.201704233 - 发表时间:
2017-11 - 期刊:
- 影响因子:19
- 作者:
Xuewang Wu;Jeff Walter;Tianli Feng;Jie Zhu;Hong Zheng;John F. Mitchell;Neven Biskup;Maria Varela;Xiulin Ruan;Chris Leighton;Xiaojia Wang - 通讯作者:
Xiaojia Wang
Quantifying the diverse wave effects in thermal transport of nanoporous graphene
- DOI:
10.1016/j.carbon.2022.06.011 - 发表时间:
2022-09-01 - 期刊:
- 影响因子:
- 作者:
Han Wei;Yue Hu;Hua Bao;Xiulin Ruan - 通讯作者:
Xiulin Ruan
Xiulin Ruan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiulin Ruan', 18)}}的其他基金
Elements: FourPhonon: A Computational Tool for Higher-Order Phonon Anharmonicity and Thermal Properties
元素:FourPhonon:高阶声子非谐性和热性质的计算工具
- 批准号:
2311848 - 财政年份:2023
- 资助金额:
$ 43万 - 项目类别:
Standard Grant
Collaborative Research: Thermal Transport via Four-Phonon and Exciton-Phonon Interactions in Layered Electronic and Optoelectronic Materials
合作研究:层状电子和光电材料中四声子和激子-声子相互作用的热传输
- 批准号:
2321301 - 财政年份:2023
- 资助金额:
$ 43万 - 项目类别:
Standard Grant
Collaborative Research: High-order Phonon Scattering and Highly Nonequilibrium Carrier Transport in Two-dimensional Electronic and Optoelectronic Materials
合作研究:二维电子光电材料中的高阶声子散射和高度非平衡载流子输运
- 批准号:
2015946 - 财政年份:2020
- 资助金额:
$ 43万 - 项目类别:
Standard Grant
CAREER: First Principles-Enabled Prediction of Thermal Conductivity and Radiative Properties of Solids
职业:利用第一原理预测固体的热导率和辐射特性
- 批准号:
1150948 - 财政年份:2012
- 资助金额:
$ 43万 - 项目类别:
Standard Grant
Predictive Design of Nanocrystal Photovoltaic Materials Based on the Phonon Bottleneck Effect
基于声子瓶颈效应的纳米晶光伏材料预测设计
- 批准号:
0933559 - 财政年份:2009
- 资助金额:
$ 43万 - 项目类别:
Standard Grant
相似国自然基金
“Lignin-first”策略下镁碱催化原生木质素定向氧化为小分子有机酸的机制研究
- 批准号:21908075
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于First Principles的光催化降解PPCPs同步脱氮体系构建及其电子分配机制研究
- 批准号:51778175
- 批准年份:2017
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
- 批准号:
2337987 - 财政年份:2024
- 资助金额:
$ 43万 - 项目类别:
Continuing Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 43万 - 项目类别:
Continuing Grant
BETTERXPS - Tackling the Peak Assignment Problem in X-ray Photoelectron Spectroscopy with First Principles Calculations
BETTERXPS - 通过第一原理计算解决 X 射线光电子能谱中的峰分配问题
- 批准号:
EP/Y036433/1 - 财政年份:2024
- 资助金额:
$ 43万 - 项目类别:
Research Grant
CAREER: First-Principles Discovery of Optically Excited States in Van der Waals Magnetic Structures
职业生涯:范德华磁结构中光激发态的第一原理发现
- 批准号:
2339995 - 财政年份:2024
- 资助金额:
$ 43万 - 项目类别:
Continuing Grant
Tackling the Peak Assignment Problem in X-ray Photoelectron Spectroscopy with First Principles Calculations
利用第一原理计算解决 X 射线光电子能谱中的峰分配问题
- 批准号:
EP/Y037022/1 - 财政年份:2024
- 资助金额:
$ 43万 - 项目类别:
Research Grant
CAREER: Understanding Electrochemical Metal Extraction in Molten Salts from First Principles
职业:从第一原理了解熔盐中的电化学金属萃取
- 批准号:
2340765 - 财政年份:2024
- 资助金额:
$ 43万 - 项目类别:
Continuing Grant
SHAIC1: Towards Scalable Human-AI Coordination from First Principles
SHAIC1:从第一原则迈向可扩展的人类与人工智能协调
- 批准号:
EP/Y028481/1 - 财政年份:2024
- 资助金额:
$ 43万 - 项目类别:
Research Grant
First-principles design of atomic defects for quantum technologies
量子技术原子缺陷的第一性原理设计
- 批准号:
DE220101147 - 财政年份:2023
- 资助金额:
$ 43万 - 项目类别:
Discovery Early Career Researcher Award
Electronic properties of organic semiconductor crystals at finite temperature from first-principles
从第一原理研究有机半导体晶体在有限温度下的电子特性
- 批准号:
23K04667 - 财政年份:2023
- 资助金额:
$ 43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An autonomous machine learning-based molecular dynamics method that utilizes first-principles atomic energy calculation
一种基于自主机器学习的分子动力学方法,利用第一原理原子能计算
- 批准号:
23H03415 - 财政年份:2023
- 资助金额:
$ 43万 - 项目类别:
Grant-in-Aid for Scientific Research (B)