Surface Chemistry for Immobilization of Ultrathin Films
超薄膜固定化的表面化学
基本信息
- 批准号:6899485
- 负责人:
- 金额:$ 20.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-04-01 至 2008-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): The modification of surfaces of materials to impact specific physical, chemical or biological properties is important in a wide range of bioanalytical settings. The development of strategies that are simple, reproducible and that give stable interfaces are particularly attractive. Immobilization via a photoactive crosslinker is a practically simple and effective method for the covalent attachment of polymers and biomolecules on surfaces. This proposal seeks to investigate the surface chemistry that influences the covalent immobilization of thin films by way of perfluorophenyl azides (PFPAs). The hypothesis is that the composition, structure, and property of the functional surface directly affect the film immobilization yield, efficiency and integrity. We base the hypothesis on our observations that 1) poly (ethylene glycol) and isotactic polypropylene could not be immobilized using our standard spin coating and photoactivation procedure, although the method should in principle be versatile and applicable to any molecules possessing C-H bond; 2) when we varied the density of the surface azido groups by co-depositing a non-photoactive molecule together with the PFPA, the immobilization yield was affected. These observations demonstrate the need for systematic studies on surface and interface properties for the immobilization.chemistry. Our goal is to develop strategies and optimal conditions for the immobilization of a greater variety of molecules and materials, thus making this method truly versatile. Method development includes the fabrication of nanometer-size patterned polymer films and nanowells, and the generation of polymer films and multilayers possessing generic functional groups for bioconjugation. The specific aims are to: 1. Investigate parameters and conditions that influence the immobilization yield, efficiency and integrity of immobilized films. A non-photoactive molecule will be co-adsorbed with the photoactive PFPA to control the density and topography of azido groups on the surface. The functional group on the non-photoactive molecule will be chosen to specifically to enhance the interactions and compatibility with the molecules to be immobilized. 2. Create nanometer-size features of polymer thin films and nanowell arrays using near-field optical lithography. Near-field optical lithography uses an optical probe to directly write features with nanoscale dimensions. In addition, the coupled laser light generates heat at the probe tip. This should increase the yield of immobilization, and broaden the range of materials that can be used for creating nanometer-size structures. We will also use the technique to fabricate true nanowell arrays with nanometer dimensions both spatially and topographically. 3. Generate thin films and multilayers possessing generic functional groups for bioconjugation. This will be accomplished using the direct immobilization chemistry developed in our laboratory. Thin films of polymers that possess -COOH, -NH2 and -SO3H groups will be generated. These polymer films will be used as generic coatings for the conjugation of a variety of biomolecules and other functional materials.
描述(由申请方提供):在广泛的生物分析环境中,对材料表面进行改性以影响特定的物理、化学或生物学特性是重要的。发展战略,是简单的,可重复的,并提供稳定的接口是特别有吸引力的。通过光敏交联剂进行固定是将聚合物和生物分子共价连接到表面上的一种实际简单而有效的方法。该提案旨在研究影响薄膜通过全氟苯基叠氮化物(PFPAs)共价固定的表面化学。假设功能表面的组成、结构和性质直接影响膜固定化的产率、效率和完整性。我们的假设基于我们的观察,1)聚(乙二醇)和全同立构聚丙烯不能使用我们的标准旋涂和光活化程序固定,尽管该方法原则上应该是通用的并且适用于具有C-H键的任何分子; 2)当我们通过将非光活性分子与PFPA一起共沉积来改变表面叠氮基的密度时,固定化产率受到影响。这些观察结果表明,需要系统的研究表面和界面性能的固定化。化学。我们的目标是开发用于固定更多种类的分子和材料的策略和最佳条件,从而使这种方法真正通用。方法开发包括纳米尺寸的图案化聚合物膜和微孔的制造,以及具有生物共轭通用官能团的聚合物膜和多层膜的生成。具体目标是:1.研究影响固定化膜的固定化率、效率和完整性的参数和条件。非光活性分子将与光活性PFPA共吸附以控制表面上叠氮基的密度和形貌。将选择非光活性分子上的官能团以特异性地增强与待固定的分子的相互作用和相容性。2.利用近场光学微影技术制作奈米尺寸的聚合物薄膜与微胞阵列。近场光学光刻使用光学探针来直接写入具有纳米尺度尺寸的特征。此外,耦合的激光在探针尖端处产生热量。这将增加固定化的产量,并扩大可用于创建纳米尺寸结构的材料范围。我们也将使用此技术来制造真正的奈米尺寸的奈米胞阵列。3.生成具有生物共轭通用官能团的薄膜和多层膜。这将使用我们实验室开发的直接固定化化学来完成。将产生具有-COOH、-NH 2和-SO 3 H基团的聚合物薄膜。这些聚合物膜将被用作通用涂层,用于各种生物分子和其他功能材料的缀合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MINGDI YAN其他文献
MINGDI YAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MINGDI YAN', 18)}}的其他基金
Glycosylated Atomically-Precise Gold Clusters: Design, Synthesis and Antimicrobial Activity
糖基化原子精确金簇:设计、合成和抗菌活性
- 批准号:
9585513 - 财政年份:2018
- 资助金额:
$ 20.4万 - 项目类别:
Maltoheptaose based nanotherapeutics for multidrug resistant bacterial infection
基于麦芽七糖的纳米疗法治疗多重耐药细菌感染
- 批准号:
8647713 - 财政年份:2014
- 资助金额:
$ 20.4万 - 项目类别:
Surface and Interface Mediated Photocoupling Chemistry
表面和界面介导的光耦合化学
- 批准号:
7516586 - 财政年份:2005
- 资助金额:
$ 20.4万 - 项目类别:














{{item.name}}会员




