Novel extremophilic enzymes for new applications in Healthcare Products (Ref: 4188)

用于医疗保健产品新应用的新型极端酶(参考号:4188)

基本信息

  • 批准号:
    2634848
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

The understanding of cellular communication and microbial biofilm formation is a key interest for Unilever with respect to many of their home and healthcare products which look to target this area for improving hygiene. Enzymes that can interfere with the biofilm formation by specifically hydrolysing the microbial communication lactone molecules are of key importance towards addressing these problems. The potential of combining this approach with other cell wall degrading hydrolases and cleaning chemistries, attempts to create a more holistic approach to multiple modes of action providing the desired outcome. If the multiple mode of intervention is successful it may also help in the prevention of undesired bacterial resistance. This is well aligned to the Clean Future agenda of Unilever and increasing sustainability of products.Thermostable lactonases have been identified using structural bioinformatics from thermophilic and metagenomes from 'Hot Environments'. The three classes of lactonase enzymes have different structures and different enzymatic mechanisms. The use of these enzymes to break down contaminating biofilms has advantages over the use of antibiotics, and importantly eliminates problems with antibiotic resistance. The Quorum sensing lactonases have been reported to disrupt biofilm formation, the enol lactonases are a new potential target for biofilm disruption and some preliminary information on substrate specificity of these lactonases is available. The Gluconolactonases have been reported to also disrupt biofilm formation.Recent studies have identified many enzymes useful for improved Healthcare products. Traditionally the majority of industrial enzymes used to date have been obtained from mesophilic organisms, which have a limited stability under harsh industrial conditions including high temperatures, high salt concentrations, extreme pH, and formulation chemicals such as surfactants. Therefore, the discovery of robust enzymes, engineering of more active variants, as well as better understanding of their molecular mechanisms, represent some of the key challenges for the development of future biocatalytic strategies in Industrial Biotechnology. The extremophilic microorganisms represent an attractive source of industrial biocatalysts because they are naturally evolved robust enzymes to function under extreme conditions. In addition, extremophilic enzymes found in one environment (e.g. high temperature) are typically also tolerant to other extreme conditions (e.g. organic solvents, surfactants and other chemical formulation components) making them useful for a variety of applications.Task 1 - Assessment of novel lactonase and acylases in breakdown of microbial biofilms using quorum sensing lactonases, enol lactonases, gluconolactonases and AHL acylases.Task 2 - Search Metagenomics DNA databases for further related enzymes. Carry out structurally characterization of selected enzymes by both X-ray crystallography and molecular modelling/ substrate docking. Crystal structures will be used to understand the substrate selectivity and catalytic mechanism of these enzymes and to direct protein engineering experiments to improve their efficacy under industrial conditions.Task 3 - Evaluation of selected enzyme for application in biofilm disruption. Project placements at Unilever R&D labs within the Material Innovation Factory will involve the use of a bespoke automated microbiological testing platform (for surface adhered microbes), as well as use of fluidic devices and visualisation techniques to observe and measure biofilm development, including gene reporter systems.Task 4 - All potential lactonases that have positive effects on the formation or disruption of biofilms will be subjected to different types of immobilisation techniques to help develop and broaden their potential applications for home and healthcare products.
对细胞通讯和微生物生物膜形成的理解是联合利华对其许多家居和医疗保健产品的主要兴趣,这些产品旨在改善卫生。可以通过特异性水解微生物通讯内酯分子来干扰生物膜形成的酶对于解决这些问题至关重要。将这种方法与其他细胞壁降解水解酶和清洁化学品组合的潜力试图创造一种更全面的方法来提供所需的结果。如果多模式干预是成功的,它也可能有助于防止不希望的细菌耐药性。这与联合利华的清洁未来议程和提高产品的可持续性是一致的。使用结构生物信息学从“热环境”的嗜热菌和宏基因组中鉴定出了热稳定内酯酶。这三类内酯酶具有不同的结构和不同的酶促机制。使用这些酶来分解污染的生物膜比使用抗生素具有优势,并且重要的是消除了抗生素耐药性的问题。已报道Quorum感应内酯酶破坏生物膜形成,烯醇内酯酶是生物膜破坏的新的潜在靶标,并且可获得关于这些内酯酶的底物特异性的一些初步信息。据报道,葡萄糖酸内酯酶也能破坏生物膜的形成。最近的研究发现,许多酶可用于改善医疗保健产品。传统上,迄今为止使用的大多数工业酶都是从嗜温生物中获得的,这些生物在苛刻的工业条件下具有有限的稳定性,这些条件包括高温、高盐浓度、极端pH和制剂化学品如表面活性剂。因此,发现强大的酶,工程更活跃的变种,以及更好地了解他们的分子机制,代表了未来的生物催化策略在工业生物技术的发展的一些关键挑战。极端微生物代表了工业生物催化剂的一个有吸引力的来源,因为它们是自然进化的在极端条件下发挥作用的强大酶。此外,在一种环境中发现的极端酶(例如高温)通常也耐受其它极端条件任务1 -使用群体感应内酯酶,烯醇内酯酶,β-内酯酶和阿勒酰基化酶。任务2 -在宏基因组学DNA数据库中搜索进一步相关的酶。通过X射线晶体学和分子建模/底物对接对选定的酶进行结构表征。晶体结构将用于了解这些酶的底物选择性和催化机制,并指导蛋白质工程实验,以提高其在工业条件下的功效。任务3 -生物膜破坏中应用的选定酶的评价。材料创新工厂内的联合利华研发实验室的项目安置将涉及使用定制的自动微生物测试平台(对于表面粘附的微生物),以及使用流体装置和可视化技术来观察和测量生物膜的发展,包括基因报告系统。任务4 -所有对生物膜的形成或破坏有积极影响的潜在内酯酶都将接受不同类型的固定技术,以帮助开发和扩大其潜力用于家庭和医疗保健产品。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Novel extremophilic enzymes for new applications in Healthcare Products
新型嗜极酶在医疗保健产品中的新应用
  • 批准号:
    BB/W510476/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Training Grant
Structure-Property relationship of S-layer protein assemblies at extremophilic archea bacteria
极端古细菌S层蛋白组装体的结构-性质关系
  • 批准号:
    RGPIN-2018-04970
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Rapid dissection of the biosynthesis of antiMRSA antibiotics produced in co-culture by extremophilic fungi through the development of Fungal Artificial Chromosomes
通过真菌人工染色体的发育,快速剖析嗜极真菌共培养中产生的抗 MRSA 抗生素的生物合成
  • 批准号:
    10546657
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Rapid dissection of the biosynthesis of antiMRSA antibiotics produced in co-culture by extremophilic fungi through the development of Fungal Artificial Chromosomes
通过真菌人工染色体的发育,快速剖析嗜极真菌共培养中产生的抗 MRSA 抗生素的生物合成
  • 批准号:
    10657805
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Structure-Property relationship of S-layer protein assemblies at extremophilic archea bacteria
极端古细菌S层蛋白组装体的结构-性质关系
  • 批准号:
    RGPIN-2018-04970
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Structure-Property relationship of S-layer protein assemblies at extremophilic archea bacteria
极端古细菌S层蛋白组装体的结构-性质关系
  • 批准号:
    RGPIN-2018-04970
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Novel extremophilic metalloprotease for consumer product application
用于消费品应用的新型极端金属蛋白酶
  • 批准号:
    2276364
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Studentship
Novel extremophilic metalloprotease for consumer product application
用于消费品应用的新型极端金属蛋白酶
  • 批准号:
    BB/S506941/1
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Training Grant
Structure-Property relationship of S-layer protein assemblies at extremophilic archea bacteria
极端古细菌S层蛋白组装体的结构-性质关系
  • 批准号:
    RGPIN-2018-04970
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
New enzymes from extremophilic environments for biotechnology
来自极端环境的生物技术新酶
  • 批准号:
    2118603
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了