Rapid dissection of the biosynthesis of antiMRSA antibiotics produced in co-culture by extremophilic fungi through the development of Fungal Artificial Chromosomes
通过真菌人工染色体的发育,快速剖析嗜极真菌共培养中产生的抗 MRSA 抗生素的生物合成
基本信息
- 批准号:10657805
- 负责人:
- 金额:$ 98.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAnabolismAnti-Infective AgentsAnti-Inflammatory AgentsAntibioticsAntifungal AgentsApplications GrantsArtificial ChromosomesArtificial IntelligenceBacterial Artificial ChromosomesBioinformaticsBiological AssayBusinessesCOVID-19 pandemicChemicalsChronic DiseaseCoculture TechniquesCommunicable DiseasesCoupledCrude ExtractsDNADataDedicationsDevelopmentDissectionEconomicsEngineeringEnvironmentFermentationGene ClusterGenetic VariationGenomicsGoalsHigh Pressure Liquid ChromatographyLengthLibrariesMetagenomicsMethodologyMoldsMontanaMulti-Drug ResistanceNatural CompoundNatural ProductsNuclear Magnetic ResonancePathway interactionsPharmaceutical PreparationsPhasePreparationProductionProliferatingPublic HealthPublishingResearchResearch ProposalsScienceServicesSmall Business Innovation Research GrantSourceStructureTechnologyTherapeuticUniversitiesWorkWorkplaceantimicrobialbioinformatics pipelineclinical developmentcostdrug discoverydrug resistant microorganismfightingfungusimprovedin silicoinfectious disease treatmentinnovationmicrobialnext generation sequencingnovelnovel antibiotic classnovel therapeuticspandemic diseasephase 2 studyresearch and developmentsecondary metabolitesocialtoolvectorvirtual
项目摘要
PROJECT SUMMARY. The economic and social burden of the treatment of infectious and
chronic diseases is enormous, >$300B annually. The ongoing COVID-19 pandemic alone will
cost the U.S. economy roughly $8 trillion over the next decade without an effective drug to date.
The emergence of drug resistant microbes, the diminishing supply of novel classes of antibiotics,
and the dramatic reduction in R&D of anti-infective, anti-proliferation and anti-inflammatory
agents have further amplified public health concerns. Fungi are prolific producers of anti-
microbial secondary metabolites (SM) and since the turn of the century have provided 45% of
bioactive molecules from all microbial sources. However, environmental filamentous fungi and
fungal SM biosynthetic gene clusters (BGCs) remain largely untapped due to difficulties in
efficiently handling and expressing these SM BGCs. This research proposal will advance the
science of functional SM metagenomics, and will further advance our newly-developed fungal
artificial chromosome (FAC) technology by integrating Next-Gen Sequencing (NGS), artificial
intelligence (AI), FAC heterologous expression, and direct Nuclear Magnetic Resonance (NMR)
analysis. Our methodologies enable precise capture of full-length SM BGCs from any fungus,
and heterologous expression of large intact silent SM BGCs-containing FAC clones for high
yields of natural products (NPs). Our goals are to improve the prediction of novel BGCs and
their compound production, and to discover novel NPs for clinical development of novel
antibiotics and other drug leads. In proof-concept research, we successfully predicted and
captured the FAC-BGC of novel antibiotic berkeleylactone A and 136 BGCs from two different
fungi by FAC-NGS. Phenomenally, we achieved at least 60% yields of discreet NP compounds
as FAC crude extracts by heterologous expression of 5 of 17 BGC-FACs. We also elucidate the
structures of 15 NP molecules with diverse activities, including TWO novel compounds by direct
NMR analysis of FAC crude extracts, due to the high yield of some compounds. In this Phase II
study, we will further improve our in-house FAC-NGS-AI pipeline to better predict novel fungal
BGCs and their NPs, increasing the compound hit rate to 50~70% with high yield. We will
completely dissect the berkeleylactone BGC and discover novel derivatives of this new antibiotic
of homologous BGCs of other fungi. We will also study twelve fungi (ten fungi with no reference
genomic sequences available) with an estimated 800 BGCs. This technology should improve
fungal SM discovery 100~1000 fold and result in the discovery of at least five novel antibiotics,
and other drug leads from un-studied/un-sequenced fungi of the toxic Berkeley Pit.
项目摘要。治疗传染病和结核病的经济和社会负担
慢性病是巨大的,每年超过3000亿美元。仅持续的COVID-19大流行就将
到目前为止,在没有有效药物的情况下,美国经济在未来十年内损失了大约8万亿美元。
抗药性微生物的出现,新型抗生素的供应减少,
以及抗感染、抗增殖和抗炎药物的研发大幅减少
代理商进一步加剧了公众健康问题。真菌是抗-
微生物次级代谢产物(SM),自世纪以来,
所有微生物来源的生物活性分子。然而,环境丝状真菌和
真菌SM生物合成基因簇(BGC)由于在
有效地处理和表达这些SM BGC。这项研究计划将推动
科学的功能SM宏基因组学,并将进一步推进我们新开发的真菌
人工染色体(FAC)技术通过整合下一代测序(NGS),人工
人工智能(AI)、FAC异源表达和直接核磁共振(NMR)
分析.我们的方法能够从任何真菌中精确捕获全长SM BGC,
和含有大的完整沉默SM BGC的FAC克隆的异源表达,用于高表达。
天然产物(NPs)的产量。我们的目标是提高新的BGC的预测,
它们的化合物生产,并发现新的NP用于新的临床开发。
抗生素和其他药物。在概念验证研究中,我们成功地预测了
捕获了新型抗生素berkeleylactone A的FAC-BGC和来自两个不同的
真菌FAC-NGS。显然,我们实现了至少60%的离散NP化合物的产率
作为FAC粗提取物,通过异源表达17个BGC-FAC中的5个。我们还阐明了
15个具有不同活性的NP分子的结构,包括两个新化合物,
FAC粗提物的NMR分析,由于某些化合物的高产率。在第二阶段
研究,我们将进一步改善我们的内部FAC-NGS-AI管道,以更好地预测新的真菌
BGC及其NP,使复合命中率提高到50~70%,产量高。我们将
彻底剖析伯克力内酯BGC,发现这种新抗生素的新衍生物
其他真菌的同源BGC。我们还将研究12种真菌(10种真菌没有参考
基因组序列),估计有800个BGC。这项技术应该改进
真菌SM发现100~1000倍,并导致至少5种新抗生素的发现,
和其他药物线索从未研究/未测序的真菌有毒伯克利坑。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chengcang Charles Wu其他文献
Chengcang Charles Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chengcang Charles Wu', 18)}}的其他基金
A Platform to Identify Antifungal Compounds with Novel Action Mechanisms
鉴定具有新颖作用机制的抗真菌化合物的平台
- 批准号:
10760421 - 财政年份:2023
- 资助金额:
$ 98.27万 - 项目类别:
Rapid dissection of the biosynthesis of antiMRSA antibiotics produced in co-culture by extremophilic fungi through the development of Fungal Artificial Chromosomes
通过真菌人工染色体的发育,快速剖析嗜极真菌共培养中产生的抗 MRSA 抗生素的生物合成
- 批准号:
10546657 - 财政年份:2022
- 资助金额:
$ 98.27万 - 项目类别:
A robust heterologous expression system of intact fungal secondary metabolite gene clusters for natural product discovery in Aspergillus nidulans
完整真菌次生代谢物基因簇的强大异源表达系统,用于构巢曲霉天然产物的发现
- 批准号:
9120977 - 财政年份:2016
- 资助金额:
$ 98.27万 - 项目类别:
Expanding small molecule functional metagenomics through shuttle BAC expression i
通过穿梭 BAC 表达扩展小分子功能宏基因组
- 批准号:
8123947 - 财政年份:2011
- 资助金额:
$ 98.27万 - 项目类别:
New Strategies for De Novo Sequencing of Daunting Genomes
令人畏惧的基因组从头测序的新策略
- 批准号:
8001158 - 财政年份:2010
- 资助金额:
$ 98.27万 - 项目类别:
Random Shear Shuttle BAC Libraries for Antimicrobial Discovery from Soil Metageno
用于从土壤 Metageno 中发现抗菌剂的随机剪切穿梭 BAC 文库
- 批准号:
7801784 - 财政年份:2010
- 资助金额:
$ 98.27万 - 项目类别:
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 98.27万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 98.27万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 98.27万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 98.27万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 98.27万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 98.27万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 98.27万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 98.27万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 98.27万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 98.27万 - 项目类别:
Discovery Early Career Researcher Award














{{item.name}}会员




