Inferring ancestry and relatedness of human genomes using ancient DNA samples' and falls within the EPSRC Artificial Intelligence and Healthcare Techn

使用古代 DNA 样本推断人类基因组的祖先和相关性,属于 EPSRC 人工智能和医疗保健技术的范围

基本信息

  • 批准号:
    2635643
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

At every genomic position, two individuals are connected through genealogical relationships that lead to a common ancestor. The chronological distance from the individuals to this ancestor is termed time to the most recent common ancestor (TMRCA). This can be generalized to a set of individuals by representing their genealogical relationships by a tree. Moving along the genome, the topology of the trees can change as the genome is broken up by recombination during meiosis. Hence, the evolutionary history of a set of samples can be compactly represented by a graph, called the ancestral recombination graph (ARG), comprised by the individual trees spanning different chunks of the genome. There are multiple computationally intensive methods to reconstruct the ARG from high-quality sequencing data of modern DNA samples. Ancient samples are of degraded quality due to environmental conditions and contamination; usually they can only be sequenced at very low coverage making the task of incorporating them into the ARG of a set of modern samples challenging. Reconstructing an accurate joint ARG between modern and ancient DNA samples has multiple potential applications that we aim to explore. It can be used for ancestry inference, by recovering the ancestry proportion a modern sample inherits from various ancient ancestral groups, enabling us to reconstruct historical events such as population migrations. We can further exploit ARG topology to detect natural selection, by locating regions of the genome that are unusually shared from certain individuals or ancient groups . Finding regions under positive or negative selection, particularly with known biological functionality, can be especially useful in healthcare-related applications and such regions have, for example, been leveraged to determine drug targets in pharmaceutical settings. Finally, the phenotypic impact of variants can be evaluated by testing whether ancestry from certain groups is more closely related to certain phenotypes.The project's first goal is to build a relatedness inference algorithm that can infer tree topology and TMRCAs between modern and ancient samples and use it to reconstruct a joint ARG with data from the UK BioBank and other sources. Long-range chromosomal regions that are shared across pairs of samples are informative for this analysis but hard to detect in low coverage ancient DNA, so our algorithm will need to to implicitly or explicitly model haplotype sharing despite the lack of phasing information, or in the presence of noisy computational phasing. For this algorithm, we leverage Deep Learning (DL), which has transformed many scientific fields in the past decade. Population genetics has traditionally focused on developing complex parametric models and has not yet significantly benefited from DL advances. Sequencing data has a spatial structure, so sequences from multiple samples can be stacked to form an image and analysed using computer vision approaches (e.g. Convolutional Neural Networks),adjusting for the fact that sample order is irrelevant (i.e. require exchangeable networks). As we already have access to an ARG for modern samples, our aim is to explore the use of attention- and graph-based methods to extract ARG information that will help infer ancestry between modern and ancient samples.Overall, we expect to make two main contributions. The first is algorithmic development that will allow the use of DL for reconstructing joint genealogical trees for modern and ancient DNA samples, tackling quality issues for the latter. The second is joint ARG inference using real UK Biobank and ancient data. We then aim to analyse this ARG to answer questions relating to natural selection and phenotypic impact of having ancestry from certain ancient groups.
在每个基因组位置,两个个体通过导致共同祖先的系谱关系联系在一起。从个体到这个祖先的时间距离称为到最近共同祖先的时间(TMRCA)。这可以通过用树来表示它们的谱系关系来概括到一组个体。随着基因组的移动,随着基因组在减数分裂过程中被重组分解,树木的拓扑结构可能会发生变化。因此,一组样本的进化历史可以用一个称为祖先重组图(ARG)的图来简洁地表示,该图由跨越基因组不同块的单个树组成。有多种计算密集的方法可以从现代DNA样本的高质量测序数据中重建ARG。由于环境条件和污染,古代样本的质量下降;通常只能在非常低的覆盖率下对它们进行测序,这使得将它们纳入一组现代样本的ARG具有挑战性。在现代和古代DNA样本之间重建准确的联合ARG具有多种潜在的应用前景,我们的目标是探索。它可以用于祖先推断,通过恢复现代样本从各种古代祖先群体继承的祖先比例,使我们能够重建历史事件,如人口迁移。我们可以进一步利用ARG拓扑学来检测自然选择,通过定位基因组中与某些特定个体或古老群体异常共享的区域。寻找正或负选择区域,特别是具有已知生物功能的区域,在与医疗保健相关的应用中可能特别有用,例如,此类区域已被用来确定制药环境中的药物靶标。最后,通过测试某些群体的祖先是否与某些表型更紧密地相关,可以评估变异的表型影响。该项目的第一个目标是建立一个关联度推断算法,可以推断现代和古代样本之间的树状拓扑和TMRCA,并使用它来重建与英国生物库和其他来源的数据联合的ARG。跨样本对共享的远程染色体区域对于这种分析来说是信息丰富的,但在低覆盖率的古代DNA中很难检测到,因此我们的算法将需要隐式或显式地建模单倍型共享,尽管缺乏分相信息,或者在存在噪声的计算分相的情况下。对于这个算法,我们利用深度学习(DL),它在过去十年中改变了许多科学领域。种群遗传学传统上专注于开发复杂的参数模型,但尚未从DL进展中显著受益。测序数据具有空间结构,因此可以将多个样本的序列堆叠在一起形成图像,并使用计算机视觉方法(例如卷积神经网络)进行分析,以调整样本顺序无关的事实(即需要可交换的网络)。由于我们已经可以访问现代样本的ARG,我们的目标是探索使用基于注意力和图形的方法来提取ARG信息,这些信息将有助于推断现代和古代样本之间的祖先。总的来说,我们希望做出两个主要贡献。第一个是算法开发,它将允许使用DL来重建现代和古代DNA样本的联合谱系树,为后者解决质量问题。第二种是使用真实的英国生物库和古代数据的联合ARG推理。然后,我们的目标是分析这一ARG,以回答与自然选择和具有某些古代群体祖先的表型影响有关的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Pan-ancestry approaches to understand the genetic and environmental contributors to mental health in children and youth
通过泛祖方法了解儿童和青少年心理健康的遗传和环境因素
  • 批准号:
    498293
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Project 2: Biomarker Analysis, Non-Genetic Risk Factors, and Their Genetic Interactions
项目 2:生物标志物分析、非遗传风险因素及其遗传相互作用
  • 批准号:
    10555697
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Improving Prediction of Asthma-related Outcomes with Genetic Ancestry-informed Lung Function Equations
利用遗传祖先信息的肺功能方程改善哮喘相关结果的预测
  • 批准号:
    10723861
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Genetic and Environmental Influences on Individual Sweet Preference Across Ancestry Groups in the U.S.
遗传和环境对美国不同血统群体个体甜味偏好的影响
  • 批准号:
    10709381
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Leveraging Hispanic/Latino diversity to map and characterize cardiovascular disease loci
利用西班牙裔/拉丁裔多样性来绘制和描述心血管疾病基因座
  • 批准号:
    10587581
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Cause and Effect Relationships Between Glycation and the Ancestry Specific Tumor Stroma
糖化与祖先特异性肿瘤基质之间的因果关系
  • 批准号:
    10586185
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
African Genomics Data Hub Biomedical Knowledgebase
非洲基因组数据中心生物医学知识库
  • 批准号:
    10560722
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Determining the impact of ancestry on oropharyngeal cancer biology and treatment response.
确定血统对口咽癌生物学和治疗反应的影响。
  • 批准号:
    10562456
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Deconvoluting the Ewing sarcoma genetic program using ancestry-informed human iPSC modeling
使用基于血统的人类 iPSC 模型对尤文肉瘤遗传程序进行解卷积
  • 批准号:
    10562800
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Specificity of ABCA7-mediated lipid efflux and its effects on intracellular lipid metabolism in neural cells
ABCA7介导的脂质流出的特异性及其对神经细胞细胞内脂质代谢的影响
  • 批准号:
    10591201
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了