Improving Energy Consumption Monitoring in Food and Drinks Manufacturing and Storage Systems with Predictive Machine Learning
通过预测机器学习改进食品和饮料制造和存储系统的能耗监控
基本信息
- 批准号:2637176
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The projected surge in the global population and the increasing demand for food present a significant sustainability challenge in the face of relatively slower growth in energy production. The food and drink industry, being the largest manufacturing sector in the United Kingdom, faces substantial sustainability strains due to its significant energy consumption and greenhouse gas emissions. This PhD aims to address these challenges by leveraging predictive machine learning techniques to improve energy consumption monitoring in food and drinks manufacturing and storage systems. This PhD comprises three interconnected studies, each focusing on aspects of energy consumption and prediction within the food and drinks manufacturing and cold storage environments. Based on weather data, the first study aims to develop explainable machine learning techniques for predicting electricity consumption, indoor temperature, and indoor humidity. This research investigates the challenges presented by current models in this specialised domain and explores the integration of seasonal elements and human behaviour into these predictive models. Accurate prediction of electricity consumption can greatly contribute to reducing energy usage through improved monitoring and planning. This optimisation can help streamline operational scheduling in such environments, facilitating more sustainable energy management practices and ultimately reducing CO2 emissions. Additionally, monitoring temperature and humidity in such settings is crucial to ensure food safety and preserve the quality of perishable items. Building upon the first study, the second study aims to develop predictive models for not only electricity but also gas consumption in a food manufacturing environment based on production demand and weather conditions. By integrating production schedules with weather conditions, these models have the potential to optimise resource utilisation and reduce costs. The third study focuses on developing a real-time anomaly detection system for gas and electricity consumption in food manufacturing environments, aiming to minimise energy waste and improve operational efficiency. Through an applied science approach, this research aims to provide valuable insights for the food and drinks industry, ultimately improving operational efficiency. This will not only result in cost reduction but also contribute to global climate change mitigation efforts. The anticipated outcomes of this study hold good potential for tangible benefits to food and drink businesses, empowering them to make informed decisions and effectively minimise their energy consumption.
预计全球人口将激增,对粮食的需求将不断增加,在能源生产增长相对较慢的情况下,这将对可持续性构成重大挑战。食品和饮料行业是英国最大的制造业,由于其巨大的能源消耗和温室气体排放,面临着巨大的可持续性压力。该博士旨在通过利用预测机器学习技术来解决这些挑战,以改善食品和饮料制造和存储系统的能耗监测。该博士学位包括三项相互关联的研究,每项研究都侧重于食品和饮料制造以及冷藏环境中的能源消耗和预测方面。基于天气数据,第一项研究旨在开发可解释的机器学习技术,用于预测电力消耗,室内温度和室内湿度。本研究调查了当前模型在这一专业领域所面临的挑战,并探讨了将季节性元素和人类行为整合到这些预测模型中。准确预测电力消耗可以通过改进监测和规划大大有助于减少能源使用。这种优化可以帮助简化此类环境中的运营调度,促进更可持续的能源管理实践,并最终减少二氧化碳排放。此外,在这种环境中监测温度和湿度对于确保食品安全和保持易腐物品的质量至关重要。在第一项研究的基础上,第二项研究旨在根据生产需求和天气条件,开发食品制造环境中电力和天然气消耗的预测模型。通过将生产计划与天气条件相结合,这些模型有可能优化资源利用并降低成本。第三项研究专注于开发食品制造环境中气体和电力消耗的实时异常检测系统,旨在减少能源浪费并提高运营效率。通过应用科学的方法,这项研究旨在为食品和饮料行业提供有价值的见解,最终提高运营效率。这不仅将降低成本,而且有助于全球减缓气候变化的努力。这项研究的预期结果为食品和饮料企业带来了实实在在的好处,使他们能够做出明智的决策,并有效地减少能源消耗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
度量测度空间上基于狄氏型和p-energy型的热核理论研究
- 批准号:QN25A010015
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Artificial Intelligence Model for Accurate Prediction of Energy Consumption in Buildings at design stage (E-MAP)
设计阶段准确预测建筑能耗的人工智能模型(E-MAP)
- 批准号:
10081365 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D
Flexibility of energy consumption rates in response to changing environment: a focus on seabirds and sea turtles
能源消耗率响应环境变化的灵活性:关注海鸟和海龟
- 批准号:
22KJ2981 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
An innovative digital transformation platform that leverages AI/ML technology, empowering hotels to enhance their efficiency by 60% and decrease energy consumption by 38%
%20创新%20数字%20转型%20平台%20那%20利用%20人工智能/机器学习%20技术,%20赋能%20酒店%20到%20增强%20他们的%20效率%20by%2060%%20和%20减少%20能源%20消耗%20by%2038%
- 批准号:
10084069 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D
Boron nitride nanosheets for low energy consumption self-cooling devices
用于低能耗自冷却装置的氮化硼纳米片
- 批准号:
DE230101371 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
Trustworthy ML approaches to energy consumption data
值得信赖的能源消耗数据机器学习方法
- 批准号:
10068428 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D
Strain-induced emergent electromagnetism for low energy consumption devices
低能耗设备的应变感应应急电磁学
- 批准号:
23KJ1419 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Effect of Feed-in-Tariff on Energy Consumption, Onsite Generation and CO2 Emissions: an Econometric Analysis of Japanese Plants
上网电价补贴对能源消耗、现场发电和二氧化碳排放的影响:日本工厂的计量经济分析
- 批准号:
23KJ2023 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Planning and evaluation method of local production for local consumption type energy project combined with renewable energy purchase system
结合可再生能源收购制度的就地消费型能源项目就地生产规划与评价方法
- 批准号:
23H01546 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Push-Button Cardiac MRI for Non-Invasive Quantification of Myocardial Energy Consumption in Heart Failure
按钮式心脏 MRI 用于心力衰竭心肌能量消耗的无创定量
- 批准号:
10503631 - 财政年份:2022
- 资助金额:
-- - 项目类别:
A Distributed Fog Computing (DFC) Model to Reduce Energy Consumption of the IoT
减少物联网能耗的分布式雾计算 (DFC) 模型
- 批准号:
22K12018 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)