The Mevalonate Pathway in Streptococcus

链球菌中的甲羟戊酸途径

基本信息

  • 批准号:
    7082300
  • 负责人:
  • 金额:
    $ 56.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-04-01 至 2011-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Streptococcus pneumonia (SP) takes the lives of nearly 4000 people daily, the majority of whom are children below the age of five. The organism's ability to evolve resistance mechanisms has produced strains capable of tolerating our "last line of defense" antibiotics. This laboratory recently discovered that diphosphomevalonate (DPM), an intermediate in the mevalonate pathway, is a potent allosteric inhibitor of the SP mevalonate kinase (MK), and that it does not inhibit the human isozyme. The mevalonate pathway is essential for survival of the organism in mouse lung. DPM and the allosteric site offer a lead compound and target that provide an opportunity to develop a new class of antibiotics that could help eradicate this disease. Our preliminary data demonstrate that compounds based on these principles are capable of killing infectious SP in rich media. This proposal integrates structure, function and synthesis in a project designed to explore and define the three enzymes that comprise the mevalonate pathway in SP, and, in so doing, provide a basis for the design and synthesis of antibiotics. The information that this program will create is of considerable fundamental scientific value. Each of the three enzymes that comprise the pathway is a member of the GHMP kinase protein superfamily, whose biomedical relevance extends to both orphan diseases and cataract formation. We have determined the structure of MK from SP, and the structure of the DPM-inhibited complex with bound substrates is imminent. These structures define the MK-target and will reveal how DPM binding disrupts chemistry. We've also determined the structure of a ternary complex of phosphomevalonate kinase (PMK) from SP, which raises intriguing mechanistic issues that emphasize both the unique and familial structural elements of PMK. Diphosphomevalonate decaboxylase (DPM-DC) is a fascinating enzyme that decarboxylates DPM via a carbocationic transition-state. We will explore the DPM-DC mechanism by defining its transition-state structures and monitoring the formation of ligand and intermediate complexes to create an advanced catalytic paradigm for this mechanistic class.
描述(由申请人提供):肺炎链球菌(SP)每天夺走近4000人的生命,其中大多数是5岁以下的儿童。生物体进化耐药机制的能力已经产生了能够耐受我们的“最后一道防线”抗生素的菌株。本实验室最近发现,甲羟戊酸途径中的中间体二磷酸甲羟戊酸(diphosphomevalonate,DPHV)是SP甲羟戊酸激酶(MK)的有效变构抑制剂,并且它不抑制人同工酶。甲羟戊酸途径对于微生物在小鼠肺中的存活是必不可少的。它和变构位点提供了一种先导化合物和靶点,为开发一种新的抗生素提供了机会,这种抗生素可以帮助根除这种疾病。我们的初步数据表明,基于这些原则的化合物能够杀死富介质中的感染性SP。该建议将结构,功能和合成整合在一个旨在探索和定义SP中构成甲羟戊酸途径的三种酶的项目中,并为抗生素的设计和合成提供基础。这个项目将产生的信息具有相当大的基础科学价值。构成该途径的三种酶中的每一种都是GHMP激酶蛋白超家族的成员,其生物医学相关性延伸到孤儿病和白内障形成。我们已经确定了从SP MK的结构,并与绑定基板的DPM抑制复合物的结构是迫在眉睫。这些结构定义了MK靶点,并将揭示结合是如何破坏化学的。我们还确定了磷酸甲羟戊酸激酶(PMK)从SP,这引起了有趣的机制问题,强调PMK的独特和家族的结构元素的三元复合物的结构。二磷酸甲羟戊酸脱羧酶(DPM-DC)是一种通过碳阳离子过渡态使β-羟戊酸脱羧的酶。我们将通过定义其过渡态结构和监测配体和中间体络合物的形成来探索DPM-DC机制,从而为这一机制类创建先进的催化范例。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas S. Leyh其他文献

Thomas S. Leyh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas S. Leyh', 18)}}的其他基金

The Study of Human Sulfuryl-Transfer Biology
人类硫酰基转移生物学的研究
  • 批准号:
    10238022
  • 财政年份:
    2018
  • 资助金额:
    $ 56.03万
  • 项目类别:
The Study of Human Sulfuryl-Transfer Biology
人类硫酰基转移生物学的研究
  • 批准号:
    10472518
  • 财政年份:
    2018
  • 资助金额:
    $ 56.03万
  • 项目类别:
The Study of Human Sulfuryl-Transfer Biology
人类硫酰基转移生物学的研究
  • 批准号:
    10225670
  • 财政年份:
    2018
  • 资助金额:
    $ 56.03万
  • 项目类别:
Sulfotransferase Specificity and the Development of Sulfation Resistant Compounds
磺基转移酶特异性和抗硫酸化化合物的开发
  • 批准号:
    9199281
  • 财政年份:
    2014
  • 资助金额:
    $ 56.03万
  • 项目类别:
Sulfotransferase Specificity and the Development of Sulfation Resistant Compounds
磺基转移酶特异性和抗硫酸化化合物的开发
  • 批准号:
    8695910
  • 财政年份:
    2014
  • 资助金额:
    $ 56.03万
  • 项目类别:
Sulfotransferase Specificity and the Development of Sulfation Resistant Compounds
磺基转移酶特异性和抗硫酸化化合物的开发
  • 批准号:
    9103163
  • 财政年份:
    2014
  • 资助金额:
    $ 56.03万
  • 项目类别:
The Mevalonate Pathway in Streptococcus
链球菌中的甲羟戊酸途径
  • 批准号:
    7193446
  • 财政年份:
    2006
  • 资助金额:
    $ 56.03万
  • 项目类别:
The Mevalonate Pathway in Streptococcus
链球菌中的甲羟戊酸途径
  • 批准号:
    7768421
  • 财政年份:
    2006
  • 资助金额:
    $ 56.03万
  • 项目类别:
The Mevalonate Pathway in Streptococcus
链球菌中的甲羟戊酸途径
  • 批准号:
    7577482
  • 财政年份:
    2006
  • 资助金额:
    $ 56.03万
  • 项目类别:
The Mevalonate Pathway in Streptococcus
链球菌中的甲羟戊酸途径
  • 批准号:
    7365219
  • 财政年份:
    2006
  • 资助金额:
    $ 56.03万
  • 项目类别:

相似海外基金

NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 56.03万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 56.03万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 56.03万
  • 项目类别:
    Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
  • 批准号:
    23K04919
  • 财政年份:
    2023
  • 资助金额:
    $ 56.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
  • 批准号:
    22KJ2957
  • 财政年份:
    2023
  • 资助金额:
    $ 56.03万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
  • 批准号:
    23K04494
  • 财政年份:
    2023
  • 资助金额:
    $ 56.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
  • 批准号:
    23K13831
  • 财政年份:
    2023
  • 资助金额:
    $ 56.03万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
  • 批准号:
    2238379
  • 财政年份:
    2023
  • 资助金额:
    $ 56.03万
  • 项目类别:
    Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
  • 批准号:
    2154399
  • 财政年份:
    2022
  • 资助金额:
    $ 56.03万
  • 项目类别:
    Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
  • 批准号:
    RGPIN-2019-06633
  • 财政年份:
    2022
  • 资助金额:
    $ 56.03万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了