The Study of Human Sulfuryl-Transfer Biology
人类硫酰基转移生物学的研究
基本信息
- 批准号:10225670
- 负责人:
- 金额:$ 30.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-08 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AgonistAllosteric SiteBinding SitesBiologyBrainCatalogsCatalysisCatecholaminesCommunitiesContraceptive methodsDiseaseDopamine ReceptorEnzymesEstrogen ReceptorsFDA approvedGlucosyltransferasesGoalsHumanIndividualIsoenzymesLaboratoriesLeadLibrariesLigand BindingLigandsLinkMetabolicMetabolismMethodsModelingMolecularMolecular ConformationNeurotransmittersNuclear ReceptorsOrganismParkinson DiseasePathway interactionsPeptide Hormones ReceptorsPharmaceutical PreparationsPhasePheromoneProtein IsoformsProteinsReactionRegulationResearchResistanceSignal TransductionSiteStructureSubstrate SpecificitySulfurSymptomsSystemTestingThyroid HormonesTimeToxinTranscendWorkcofactorhormone metabolismhuman diseasehuman tissueimprovedin silicoin vivoinfancyinhibitor/antagonistmanmicrobiotamonoamine-sulfating phenol sulfotransferaseneurotransmitter biosynthesisnovelnovel therapeuticspreventreceptorscreeningsmall moleculesteroid hormonesulfotransferasetetrahydrobiopterintool
项目摘要
During the last half century the scientific community has catalogued hundreds of signaling small molecules
that are potently regulated via sulfonation — pheromones, drugs, toxins, steroid and peptide hormones,
nuclear- and dopamine-receptor ligands… . Controlling sulfonation of specific metabolites in vivo would allow
experimentalists to probe and control sulfur biology with unprecedented precision. Our recent structure/function
studies resulted in a robust strategy for preventing sulfonation of a single compound in vivo without altering its
receptor interactions or inhibiting sulfotransferases (SULTs). Numerous diseases have been causally linked to
sulfonation of individual metabolites. Now, for the first time, we can hope to control these reactions. We
recently applied the strategy to an estrogen-receptor agonist and increased its in vivo efficacy ~10,000-fold.
We will create, and test in vivo, sulfonation-resistant derivatives of three compounds (two FDA-approved drugs
and one endogenous metabolite) with the goal of improving our ability to prevent certain Parkinson's
symptoms, control contraception, and regulate thyroid-hormone metabolism.
The subject of SULT small-molecule allostery is in its infancy. Eleven of the thirteen human SULT isoforms,
each of which operates in separate metabolic domain, harbor one or more allosteric sites. The metabolite-
allosteres that bind these sites, and hence pathways linked to the isoforms, remain unknown. We are isolating
biomedically relevant, isozyme specific SULT allosteres from small-molecule human-tissue and microbiota
libraries, bioactive screening libraries, and in-silico metabolite libraries. We have recently discovered that
tetrahydrobiopterin (THB), an essential cofactor in catecholamine neurotransmitter biosynthesis, is a potent,
highly specific allosteric inhibitor of SULT1A3, which inactivates neurotransmitters. The sulfonation-dependent
regulation of neurotransmitter activity in human brain recommends the THB pocket as a novel
neuropharmacological target. We have developed methods that allow SULT ligand-binding site structures to be
determined in a matter of days from a ligand's 1D NMR spectrum. We are using these structures, in
conjunction with MD-modelling and protein-function studies, to understand the molecular basis of allostere
function with the goal of creating compounds that can inhibit, activate and change the substrate specificities of
individual SULT isoforms. Using these methods, we have created the first “man-made” SULT allosteric inhibitor
— a potent, highly selective SULT1A3 inhibitor.
The constant undercurrent of protein-function studies in this laboratory is a well-spring of discovery. We are
now revealing that promiscuous, half-site enzymes (e.g., SULTs) conformationally couple the energetics of
their disparate reactions to one another — a finding whose implications transcend sulfuryl-transfer metabolism.
In addition, we are creating cutting-edge models of SULT allostery and catalysis, and we intend to apply our
expertise to the UDP-glucosyltransferases — the other major phase II enzyme system.
在过去的半个世纪,科学界已经对数百种信号小分子进行了编目
通过磺化-信息素,药物,毒素,类固醇和肽激素,
核和多巴胺受体配体在体内控制特定代谢物的磺化将允许
实验学家以前所未有的精度探测和控制硫生物。我们最近的结构/功能
研究结果表明,一种稳健的策略,用于防止体内单一化合物的磺化,而不改变其
受体相互作用或抑制磺基转移酶(SULT)。许多疾病都与
单个代谢物的磺化。现在,我们第一次有希望控制这些反应。我们
最近将该策略应用于雌激素受体激动剂,并将其体内功效提高了约10,000倍。
我们将创造并在体内测试三种化合物(两种FDA批准的药物)的抗磺化衍生物
和一种内源性代谢物),目的是提高我们预防某些帕金森氏症的能力,
症状,控制避孕,调节甲状腺激素代谢。
SULT小分子变构的研究还处于起步阶段。13种人类SULT同种型中的11种,
每一种都在独立的代谢结构域中起作用,具有一个或多个变构位点。代谢物-
结合这些位点的变构体以及因此与同种型连接的途径仍然未知。我们正在隔离
来自小分子人体组织和微生物群的生物医学相关的同工酶特异性SULT变构体
文库、生物活性筛选文库和计算机模拟代谢物文库。我们最近发现,
四氢生物蝶呤(THB)是儿茶酚胺类神经递质生物合成中的一种重要辅因子,
SULT 1A 3的高度特异性变构抑制剂,可使神经递质失活。磺化依赖性
人类大脑中神经递质活性的调节推荐THB口袋作为一种新的
神经药理学靶点我们已经开发了允许SULT配体结合位点结构被
在几天内从配体的1D NMR光谱确定。我们正在使用这些结构,
结合MD建模和蛋白质功能研究,了解变构素的分子基础
功能的目的是创造化合物,可以抑制,激活和改变底物特异性的
单个SULT亚型。利用这些方法,我们创造了第一个“人造”SULT变构抑制剂
- 一种强效、高选择性的SULT 1A 3抑制剂。
该实验室中蛋白质功能研究的持续暗流是发现的源泉。我们
现在揭示了混杂的半位点酶(例如,SULT)构象耦合的能量
它们对彼此不同的反应--这一发现的意义超越了硫酰转移代谢。
此外,我们正在创建SULT变构和催化的尖端模型,我们打算将我们的
UDP-葡糖基转移酶-另一个主要的II相酶系统的专业知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas S. Leyh其他文献
Thomas S. Leyh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas S. Leyh', 18)}}的其他基金
Sulfotransferase Specificity and the Development of Sulfation Resistant Compounds
磺基转移酶特异性和抗硫酸化化合物的开发
- 批准号:
9199281 - 财政年份:2014
- 资助金额:
$ 30.32万 - 项目类别:
Sulfotransferase Specificity and the Development of Sulfation Resistant Compounds
磺基转移酶特异性和抗硫酸化化合物的开发
- 批准号:
8695910 - 财政年份:2014
- 资助金额:
$ 30.32万 - 项目类别:
Sulfotransferase Specificity and the Development of Sulfation Resistant Compounds
磺基转移酶特异性和抗硫酸化化合物的开发
- 批准号:
9103163 - 财政年份:2014
- 资助金额:
$ 30.32万 - 项目类别:
相似海外基金
Allosteric site prediction and transmission of functional residues with atomistic graph analysis
通过原子图分析进行功能残基的变构位点预测和传递
- 批准号:
2859072 - 财政年份:2020
- 资助金额:
$ 30.32万 - 项目类别:
Studentship
Creation of novei anticancer lead compounds targeting the allosteric site of c-Met kinase
创建针对 c-Met 激酶变构位点的新型抗癌先导化合物
- 批准号:
16K08327 - 财政年份:2016
- 资助金额:
$ 30.32万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studying how a general allosteric site regulates protein kinase function
研究一般变构位点如何调节蛋白激酶功能
- 批准号:
8595027 - 财政年份:2013
- 资助金额:
$ 30.32万 - 项目类别:
Studying how a general allosteric site regulates protein kinase function
研究一般变构位点如何调节蛋白激酶功能
- 批准号:
8874171 - 财政年份:2013
- 资助金额:
$ 30.32万 - 项目类别:
Studying how a general allosteric site regulates protein kinase function
研究一般变构位点如何调节蛋白激酶功能
- 批准号:
8704718 - 财政年份:2013
- 资助金额:
$ 30.32万 - 项目类别:
STRUC DETERMINATION OF METAL-SUBSTITUTED & ALLOSTERIC SITE VARIANTS OF H INFLU
金属取代物的结构测定
- 批准号:
7955561 - 财政年份:2009
- 资助金额:
$ 30.32万 - 项目类别:
EXAMINATION OF ALLOSTERIC SITE OF SEROTONIN TRANSPORTER USING TRANSGENIC MICE
使用转基因小鼠检查血清素转运蛋白的变构位点
- 批准号:
7715783 - 财政年份:2008
- 资助金额:
$ 30.32万 - 项目类别:
STRUC DETERMINATION OF METAL-SUBSTITUTED & ALLOSTERIC SITE VARIANTS OF H INFLU
金属取代物的结构测定
- 批准号:
7721325 - 财政年份:2008
- 资助金额:
$ 30.32万 - 项目类别:
ALLOSTERIC SITE STRUCTURES OF CARDIOVASCULAR CHANNELS
心血管通道的变构位点结构
- 批准号:
7215384 - 财政年份:2007
- 资助金额:
$ 30.32万 - 项目类别:
EXAMINATION OF ALLOSTERIC SITE OF SEROTONIN TRANSPORTER USING TRANSGENIC MICE
使用转基因小鼠检查血清素转运蛋白的变构位点
- 批准号:
7562646 - 财政年份:2007
- 资助金额:
$ 30.32万 - 项目类别: