Solving Robust Optimal Control Problems, with Application to Spacecraft Entry, Descent and Landing
解决鲁棒最优控制问题,并将其应用于航天器进入、下降和着陆
基本信息
- 批准号:2663401
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
As space agencies and enterprises plan for future Mars missions with sequential spacecraft landings and large payload requirements, novel entry vehicles are currently being conceptualised. These spacecraft require control algorithms capable of achieving unprecedented landing precision, optimally managing thermal loads and propellent usage, while being robust to operate in highly uncertain atmospheric environments. With this application in mind, the research project aims to solve the Robust Optimal Control Problem (OCP) by faithfully including the uncertainties and nonlinearities of the model, achieving higher performance than current algorithms that use linear, time-varying basis functions for the feedback policy. The research will focus on the use of more general, neural networks as basis functions.Firstly, in the interest of solving optimal control problems - which can be posed as solving a system of differential algebraic equations (DAE) - an initial focus will be given to weighted residual methods, continuing previous work within the research group. Research will be carried in maturing this algorithm to be efficiently used for solving DAEs arising from optimal control problems. Despite the methods being general - able to solve a wide variety of OCPs (and DAEs) - special attention will be given to the spacecraft entry problem, targeting research towards the uncertain and nonlinear nature of the problem.Secondly, catering for the intrinsic uncertainty of the atmospheric environment, sensitive initial conditions, and vehicle design parameters of the problem in study, research will be carried in modelling these uncertainties. With an initial focus on polynomial chaos expansions and sample-based uncertainty as tools to explicitly represent, propagate and operate on the uncertainty of variables, which have been demonstrated to have better performance than traditional Monte Carlo methods. This is the backbone of the robustness in control algorithms this project aims to develop.Thirdly, given the significant nonlinear and non-smooth aspects of the spacecraft entry problem (e.g. three-dimensional attitude dynamics, supersonic and hypersonic effects, rocket staging and deployable structures, etc.) the use of nonlinear and non-smooth basis functions will be assessed. With a focus on neural networks, research will be carried on how they can be best used within a robust optimal control problem. An emphasis will be placed in including vehicle parameters (e.g. heat shield thickness, centre-of-mass position, actuator limits, etc.) in the dynamic optimisation process, yielding optimal spacecraft designs for a certain mission specification.This research project aims to output significant breakthroughs and improvements to current methods, theory and technology. Additionally, open-source software to solve differential equations, optimal control problems, trajectory optimisation problems, and overall spacecraft entry design optimisation will be developed and made available to industry and the research community.
随着航天机构和企业计划未来的火星任务,连续的航天器着陆和大的有效载荷要求,新的进入车辆目前正在概念化。这些航天器需要能够实现前所未有的着陆精度的控制算法,最佳地管理热负荷和推进剂的使用,同时在高度不确定的大气环境中运行。考虑到这一应用,该研究项目旨在通过忠实地包括模型的不确定性和非线性来解决鲁棒最优控制问题(OCP),实现比使用线性时变基函数的反馈策略的当前算法更高的性能。研究将集中于使用更一般的神经网络作为基函数。首先,为了解决最优控制问题--这可以被视为求解微分代数方程(DAE)系统--最初的重点将是加权残差方法,继续研究小组以前的工作。将进行研究,在成熟的算法,有效地用于解决DAE所产生的最优控制问题。尽管方法是通用的-能够解决各种各样的OCP(及DAE)-特别关注航天器进入问题,针对问题的不确定性和非线性性质进行研究。其次,针对研究问题的大气环境、敏感初始条件和飞行器设计参数的固有不确定性,将研究如何模拟这些不确定性。最初专注于多项式混沌展开和基于样本的不确定性作为工具来显式地表示,传播和操作变量的不确定性,这已被证明比传统的Monte Carlo方法具有更好的性能。第三,考虑到航天器再入问题的非线性和非光滑特性(如三维姿态动力学、超声速和高超声速效应、火箭分级和可展开结构等),本文提出了一种新的控制算法。将评估非线性和非平滑基函数的使用。以神经网络为重点,研究如何在鲁棒最优控制问题中最好地使用它们。重点将放在包括车辆参数(例如,隔热板厚度、质心位置、致动器限制等)。在动态优化过程中,为某一特定使命规范提供最佳航天器设计。2该研究项目旨在对现有方法、理论和技术进行重大突破和改进。此外,还将开发用于解决微分方程、最优控制问题、轨道优化问题和整个航天器进入设计优化的开放源码软件,并提供给工业界和研究界。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
心理紧张和应力影响下Robust语音识别方法研究
- 批准号:60085001
- 批准年份:2000
- 资助金额:14.0 万元
- 项目类别:专项基金项目
ROBUST语音识别方法的研究
- 批准号:69075008
- 批准年份:1990
- 资助金额:3.5 万元
- 项目类别:面上项目
改进型ROBUST序贯检测技术
- 批准号:68671030
- 批准年份:1986
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Optimal Transport Beyond Probability Measures for Robust Geometric Representation Learning
职业生涯:超越概率测量的最佳传输以实现稳健的几何表示学习
- 批准号:
2339898 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Optimal and Robust Designs for Active Learning and Regression Analysis
主动学习和回归分析的最佳稳健设计
- 批准号:
RGPIN-2020-05283 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Leveraging data synthesis to identify optimal and robust strategies for HIV elimination among substance-using MSM
利用数据合成来确定消除吸毒 MSM 中艾滋病毒的最佳和稳健策略
- 批准号:
10402179 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Leveraging data synthesis to identify optimal and robust strategies for HIV elimination among substance-using MSM
利用数据合成来确定消除使用药物的 MSM 中的 HIV 的最佳且稳健的策略
- 批准号:
10612874 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Optimal robust design and estimation for multi-response, multi-factor and multi-view models
多响应、多因素和多视图模型的最佳鲁棒设计和估计
- 批准号:
RGPIN-2019-04055 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Optimal Sensor Selection and Robust Traffic Detection and Estimation in a World of Connected Vehicles
协作研究:联网车辆世界中的最佳传感器选择以及稳健的交通检测和估计
- 批准号:
2152928 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Optimal robust design and estimation for multi-response, multi-factor and multi-view models
多响应、多因素和多视图模型的最佳鲁棒设计和估计
- 批准号:
RGPIN-2019-04055 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Optimal and Robust Designs for Active Learning and Regression Analysis
主动学习和回归分析的最佳稳健设计
- 批准号:
RGPIN-2020-05283 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Optimal robust design and estimation for multi-response, multi-factor and multi-view models
多响应、多因素和多视图模型的最佳鲁棒设计和估计
- 批准号:
RGPIN-2019-04055 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Transferable, Hierarchical, Expressive, Optimal, Robust, Interpretable Networks
协作研究:可转移、分层、富有表现力、最优、稳健、可解释的网络
- 批准号:
2032014 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant














{{item.name}}会员




