Investigating applications of machine learning in observing, mapping, and modelling movements of vocal organs for applications within dental healthcar

研究机器学习在观察、绘制和建模发声器官运动方面的应用,以应用于牙科医疗保健中

基本信息

  • 批准号:
    2689617
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

Currently, the use of dental devices and prosthetics requires individuals to adjust their oral behaviour so that activities such as speech and eating feel as natural as possible. However, such adjustments often end up producing unnatural speech patterns and/or unusual oral movements leading to complications, like an irregular bite.With the growing interest in healthy ageing and good oral health, new approaches are needed that allow the effective development of customised dental devices and adhesive formulation that will require minimal adjustments, whilst achieving natural oral movement. The primary aim of this research is to develop technologies and approaches that will allow us to realise this goal. To achieve this, detailed models of the mouth and relevant facial/ oral structures will be developed, to help us understand the changes in speech and food processing that occur in a denture-wearing individual. Real time MRI (rtMRI) and Electromagnetic Articulography (EMA) are currently being used as the primary tools for such developments. However, such machinery is expensive, invasive, and labour-intensive; resources that are scarce in dental practices.This leads to two main research questions. Firstly, is it possible to 3D-model the movements of the tongue during speech and food-processing, by recording only the head and neck with a 360-degree camera? Secondly, how can this technology be applied in visualising the effect of dental prosthetics on one's oral motion?The research plans to employ Artificial Intelligence and computer vision in creating a system capable of quantifying these changes in speech and food processing, without the need of individual rtMRI and EMA recordings i.e., the possibility of recording the external face and being able to successfully predict the movements of the internal structures responsible for speech (tongue, teeth etc.). The results would then be used to identify common abnormalities occurring from denture use and allow for an appropriate solution. Owing to its multidisciplinary nature, the research would be of great interest to various academic domains. It will entail the development of computer vision tracking algorithms optimised to capture oral behaviour, with the use of a digital camera. These will provide the enhanced capability of capturing movements of the mouth.It also has significant real-world applications. In the dental field, this may result in a financially and technologically feasible system that can truly allow to produce personalised dental prosthetics, without the associated cost of having to undergo several expensive rtMRI and EMA scans. The technology is not limited to just the face, rather any biological structure that shares a similarity in its internal and external movement patterns could be modelled with such a technology, for example hip joints. It would be possible to diagnose such problems without the need of an MRI. This technology would not eliminate the need of an MRI in any serious scenario but will rather serve as an alternative or supplementary in situations where such scans are currently not feasible. This includes where MRI and EMA machines are not available due to financial and specialist staff requirements.
目前,牙科设备和假肢的使用要求个人调整他们的口腔行为,以便言语和饮食等活动感觉尽可能自然。然而,这种调整往往最终会产生不自然的语音模式和/或不寻常的口腔运动,导致并发症,如不规则的咬合。随着人们对健康老龄化和良好口腔健康的日益关注,需要新的方法来有效开发定制的牙科设备和粘合剂配方,这些设备和粘合剂配方需要最小的调整,同时实现自然的口腔运动。这项研究的主要目的是开发技术和方法,使我们能够实现这一目标。为了实现这一目标,将开发详细的口腔模型和相关的面部/口腔结构,以帮助我们了解戴假牙的个体在言语和食物加工方面的变化。真实的时间MRI(rtMRI)和电磁关节造影(EMA)目前被用作这种发展的主要工具。然而,这样的机械是昂贵的,侵入性的,劳动密集型的;资源是稀缺的牙科实践。这导致了两个主要的研究问题。首先,是否有可能通过360度摄像头只记录头部和颈部来对说话和食物加工过程中舌头的运动进行3D建模?第二,这项技术如何应用于可视化假牙对口腔运动的影响?该研究计划采用人工智能和计算机视觉来创建一个能够量化语音和食品加工中这些变化的系统,而不需要单独的rtMRI和EMA记录,即,记录外部面部的可能性,并能够成功地预测负责讲话的内部结构(舌头,牙齿等)的运动。结果将被用来确定常见的异常发生的义齿使用,并允许适当的解决方案。由于其多学科的性质,研究将是极大的兴趣,以各种学术领域。这将需要开发计算机视觉跟踪算法,优化以使用数码相机捕捉口腔行为。这将提供增强的捕捉嘴部运动的能力。它也有重要的现实世界的应用。在牙科领域,这可能会产生一个经济和技术上可行的系统,可以真正允许生产个性化的牙科修复体,而无需进行几次昂贵的rtMRI和EMA扫描的相关成本。该技术不仅限于面部,而且可以用这种技术模拟任何在其内部和外部运动模式中具有相似性的生物结构,例如髋关节。这将是可能的诊断这样的问题,而不需要一个MRI。这项技术不会在任何严重的情况下消除对MRI的需求,而是在目前这种扫描不可行的情况下作为替代或补充。这包括由于财务和专业人员要求而无法使用MRI和EMA机器的情况。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
  • DOI:
    10.1002/cam4.5377
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4
  • 作者:
  • 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
  • DOI:
    10.1186/s12889-023-15027-w
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
  • 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
  • DOI:
    10.1007/s10067-023-06584-x
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
  • 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
  • DOI:
    10.1186/s12859-023-05245-9
  • 发表时间:
    2023-03-26
  • 期刊:
  • 影响因子:
    3
  • 作者:
  • 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
  • DOI:
    10.1039/d2nh00424k
  • 发表时间:
    2023-03-27
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

Applications of AI in Market Design
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研 究基金项目
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

CC* Campus Compute: UTEP Cyberinfrastructure for Scientific and Machine Learning Applications
CC* 校园计算:用于科学和机器学习应用的 UTEP 网络基础设施
  • 批准号:
    2346717
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
STTR Phase II: Optimized manufacturing and machine learning based automation of Endothelium-on-a-chip microfluidic devices for drug screening applications.
STTR 第二阶段:用于药物筛选应用的片上内皮微流体装置的优化制造和基于机器学习的自动化。
  • 批准号:
    2332121
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
Screening of environmentally friendly quantum-nanocrystals for energy and bioimaging applications by combining experiment and theory with machine learning
通过将实验和理论与机器学习相结合,筛选用于能源和生物成像应用的环保量子纳米晶体
  • 批准号:
    23K20272
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
  • 批准号:
    2414185
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Adaptive Tensor Network Decomposition for Multidimensional Machine Learning Theory and Applications
多维机器学习理论与应用的自适应张量网络分解
  • 批准号:
    24K20849
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Exploring Theory and Design Principles (ETD): Auditing Machine Learning Applications for Algorithmic Justice with Computer Science High School Students and Teachers
探索理论和设计原则 (ETD):与计算机科学高中学生和教师一起审核机器学习应用程序的算法正义
  • 批准号:
    2342438
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
DMS/NIGMS 1: Multilevel stochastic orthogonal subspace transformations for robust machine learning with applications to biomedical data and Alzheimer's disease subtyping
DMS/NIGMS 1:多级随机正交子空间变换,用于稳健的机器学习,应用于生物医学数据和阿尔茨海默病亚型分析
  • 批准号:
    2347698
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
SHF: Core: Small: Real-time and Energy-Efficient Machine Learning for Robotics Applications
SHF:核心:小型:用于机器人应用的实时且节能的机器学习
  • 批准号:
    2341183
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Categorical Duality and Semantics Across Mathematics, Informatics and Physics and their Applications to Categorical Machine Learning and Quantum Computing
数学、信息学和物理领域的分类对偶性和语义及其在分类机器学习和量子计算中的应用
  • 批准号:
    23K13008
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
New fast beam loss monitor system for Diamon-ll and machine learning applications
适用于 Diamon-ll 和机器学习应用的新型快速光束损失监测系统
  • 批准号:
    2878859
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了