SHF: Core: Small: Real-time and Energy-Efficient Machine Learning for Robotics Applications
SHF:核心:小型:用于机器人应用的实时且节能的机器学习
基本信息
- 批准号:2341183
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Technological advancements have led to a proliferation of robots using machine learning to assist humans in a wide range of tasks. However, despite the strengths of approaches based on deep learning they have several shortcomings that leave them vulnerable to exploitation from adversaries. In addition, the computational, financial, and environmental cost incurred to train these discriminative models can be quite immense. Alternatively, hybrid methods that combine (less complex) deep learning with other probabilistic techniques can provide more robust and adaptive learning. Unfortunately, these probabilistic techniques tend to suffer from long run times and high computational complexity. This project aims to develop new approaches for hardware acceleration of these probabilistic techniques across a range of robotics applications. These approaches are intended to pave the way for the design of autonomous robots that can sense, perceive, and act in real time in a range of natural human environments, and in a very energy-efficient manner. The proposed work has the potential to enhance human quality-of-life by enabling robots to dramatically expand the range of tasks they can complete. The project also includes curriculum development for an interdisciplinary course in robotic design aimed in part at getting a broader range of students interested in computing and hardware design of robotic systems.A long-term goal is to reach the point where mobile robots can compute all information needed for perception on-board and in real time. This project focuses on exploiting the complementary properties of deep learning and probabilistic inference for making perceptual decisions, where the weaknesses of one can be addressed by the strengths of the other. The researchers are investigating various algorithmic and hardware-acceleration approaches that provide effective robot perception in unstructured, natural environments in real time and at efficient energy cost. In particular, the research is aimed at goal-directed robot manipulation within a confined embedded system under limited hardware and power budgets. The focus is on probabilistic algorithms such as Bayesian inference that may be incorporated with neural network methods. The project proposes three main tasks: a) accelerating graph-based Bayesian inference in hardware, b) constructing a general-purpose library of optimized hardware modules for accelerating robot-oriented algorithms, and c) using the hardware library to develop new algorithms for robot perception.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
技术进步导致机器人使用机器学习来协助人类完成各种任务。然而,尽管基于深度学习的方法具有优势,但它们也有一些缺点,使它们容易受到对手的利用。此外,训练这些判别模型所产生的计算、财务和环境成本可能非常巨大。 或者,将联合收割机(不太复杂)深度学习与其他概率技术相结合的混合方法可以提供更鲁棒和自适应的学习。 不幸的是,这些概率技术往往遭受长运行时间和高计算复杂性。 该项目旨在开发一系列机器人应用中这些概率技术的硬件加速新方法。这些方法旨在为自主机器人的设计铺平道路,这些机器人可以在一系列自然人类环境中以非常节能的方式感知,感知和真实的时间行动。这项拟议中的工作有可能通过使机器人能够显着扩大它们可以完成的任务范围来提高人类的生活质量。 该项目还包括机器人设计跨学科课程的课程开发,其部分目的是让更广泛的学生对机器人系统的计算和硬件设计感兴趣。长期目标是使移动的机器人能够在真实的时间内计算感知所需的所有信息。该项目的重点是利用深度学习和概率推理的互补特性来做出感知决策,其中一个的弱点可以通过另一个的优势来解决。研究人员正在研究各种算法和硬件加速方法,以真实的时间和有效的能源成本在非结构化的自然环境中提供有效的机器人感知。特别是,该研究的目的是在有限的硬件和电源预算下,在有限的嵌入式系统内的目标导向的机器人操作。重点是概率算法,如贝叶斯推理,可以与神经网络方法相结合。该项目提出三项主要任务:B)构建用于加速面向机器人的算法的优化硬件模块的通用库,以及c)利用硬件库开发机器人感知的新算法。该奖项反映了NSF的法定使命,并通过利用基金会的智力价值和更广泛的影响进行评估,被认为值得支持审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruth Bahar其他文献
Ruth Bahar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruth Bahar', 18)}}的其他基金
SHF: Core: Small: Real-time and Energy-Efficient Machine Learning for Robotics Applications
SHF:核心:小型:用于机器人应用的实时且节能的机器学习
- 批准号:
2128036 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF-BSF: SHF: CCF: Small: Collaborative Research: Hardware/Software Design of Durable Data Structures and Algorithms for Non-Volatile Main Memory
NSF-BSF:SHF:CCF:小型:协作研究:非易失性主存储器的持久数据结构和算法的硬件/软件设计
- 批准号:
1908806 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: Effects of Noise in Ultimate CMOS: Modeling and Simulation Frameworks, Noise-Immune Circuit Designs, and Experimental Validation
SHF:小:终极 CMOS 中的噪声影响:建模和仿真框架、抗噪声电路设计和实验验证
- 批准号:
1525486 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research: Transparent and Energy-Efficient Speculation on NUMA Architectures for Embedded Multiprocessor Systems
CSR:小型:协作研究:嵌入式多处理器系统 NUMA 架构的透明且节能的推测
- 批准号:
1319095 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Energy-Aware Memory Synchronization for Embedded Multicore Systems
合作研究:嵌入式多核系统的能量感知内存同步
- 批准号:
0903384 - 财政年份:2009
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NIRT: (Nanoscale Devices and System Architecture): Fault-tolerant, Probalisitic Computing with Markov Random Field Architectures and CMOS Nanodevices
NIRT:(纳米级设备和系统架构):使用马尔可夫随机场架构和 CMOS 纳米设备进行容错、概率计算
- 批准号:
0506732 - 财政年份:2005
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Combining Hardware and Software Monitoring for Improved Power and Performance Tuning
结合硬件和软件监控以改进功耗和性能调整
- 批准号:
0311180 - 财政年份:2003
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NER: Y-Junction Nanotube-based Computer Devices and Architectures
NER:基于 Y 形结纳米管的计算机设备和架构
- 批准号:
0304284 - 财政年份:2003
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Symbolic Techniques for Evaluating Complex Custom Circuits
评估复杂定制电路的符号技术
- 批准号:
0204151 - 财政年份:2002
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: (Re)Configuring Architectures for High Performance and Low Power
职业:(重新)配置高性能和低功耗架构
- 批准号:
9734247 - 财政年份:1998
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
基于核心SSR标记的特色小果型西瓜品种鉴定
- 批准号:2025JJ70198
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于MITF人源突变KI小腺模型对Waardenburg综合征核心致病机理的探索及AAV疗法的应用
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
面向小核心机高压压气机的开放式间隙泄漏流时空演化机制研究
- 批准号:52376027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向混合电推进系统的小核心机高压压气机叶片/端壁耦合流动控制
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
沙参麦冬汤通过应激颗粒核心组分G3BP1调节mTOR信号通路治疗非小细胞肺癌的作用机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于小RNA病毒2C解旋酶核心结构特征的抗病毒策略
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
基于萘并多氮杂环核心的线型A1-D-A2-D-A1类小分子受体光伏材料研究
- 批准号:
- 批准年份:2020
- 资助金额:64 万元
- 项目类别:面上项目
有机催化不对称芳烃C-H官能化构建核心轴手性骨架
- 批准号:21901105
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于复杂网络筛选中医核心用药调控小胶质细胞治疗抑郁症机制研究
- 批准号:81960917
- 批准年份:2019
- 资助金额:35.0 万元
- 项目类别:地区科学基金项目
基于PD-1/PD-L1通路的核心岩藻糖基化修饰调节细胞毒性T淋巴细胞杀伤非小细胞肺癌的作用机理研究
- 批准号:31870797
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
OAC Core: SHF: SMALL: ICURE -- In-situ Analytics with Compressed or Summary Representations for Extreme-Scale Architectures
OAC 核心:SHF:SMALL:ICURE——针对超大规模架构的压缩或摘要表示的原位分析
- 批准号:
2333899 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CCF: SHF: CORE: Small: Towards Systematic Quality Control of Physically Unclonable Functions (PUFs)
CCF:SHF:CORE:小型:迈向物理不可克隆功能(PUF)的系统质量控制
- 批准号:
2244479 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Core: Small: Real-time and Energy-Efficient Machine Learning for Robotics Applications
SHF:核心:小型:用于机器人应用的实时且节能的机器学习
- 批准号:
2128036 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF CORE: Small: Hybrid NLP and Formal Techniques for Synthesizing Assertions and Identifying Ambiguities from English
SHF CORE:小型:用于综合断言和识别英语歧义的混合 NLP 和形式化技术
- 批准号:
2101021 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CISE Core: CCF: SHF: Small: Future-Proof Test Corpus Synthesis for Evolving Software
CISE 核心:CCF:SHF:小型:面向发展软件的面向未来的测试语料库合成
- 批准号:
2120955 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
OAC Core: SHF: SMALL: ICURE -- In-situ Analytics with Compressed or Summary Representations for Extreme-Scale Architectures
OAC 核心:SHF:SMALL:ICURE——针对超大规模架构的压缩或摘要表示的原位分析
- 批准号:
2007775 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: CNS Core: Small: Server architecture optimizations for microsecond-scale RPCs
SHF:CNS Core:小型:微秒级 RPC 的服务器架构优化
- 批准号:
2006602 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
OAC Core: SHF: SMALL: ICURE -- In-situ Analytics with Compressed or Summary Representations for Extreme-Scale Architectures
OAC 核心:SHF:SMALL:ICURE——针对超大规模架构的压缩或摘要表示的原位分析
- 批准号:
2034850 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
OAC Core: SHF: Small: Enabling Rapid Design and Deployment of Deep Learning Models on Hardware Accelerators
OAC 核心:SHF:小型:支持在硬件加速器上快速设计和部署深度学习模型
- 批准号:
1909900 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Design of Many-core NoCs for the Dark Silicon Era
SHF:小型:协作研究:暗硅时代的多核 NoC 设计
- 批准号:
1619456 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant