Clinically trusted Artificial Intelligence and medical image analysis for monitoring inflammatory arthritis
临床值得信赖的人工智能和医学图像分析用于监测炎症性关节炎
基本信息
- 批准号:2721657
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Rheumatoid arthritis (RA) and psoriatic arthritis (PsA) are the two most prevalent forms of inflammatory arthritis that cause autoimmune-induced joint inflammation leading to structural damage, pain and significant disability in patients. Current clinical diagnosis and monitoring of the diseases rely on plain radiographs of hands, wrists, and feet for damage assessment. Several radiographic scoring systems have been proposed and adopted in clinical research and trials for damage quantification. However, their application is limited by the complexity of manual scoring, inter-observer variability and failure to describe detailed variations in disease manifestation, making it difficult to quantify treatment effects and disease progression. As a time-consuming process, scoring is rarely performed in clinical diagnosis and monitoring of the disease progression.With advances in Artificial Intelligence (AI), several automated radiographic diagnosis, grading and scoring frameworks have been proposed for RA, demonstrating promising performance. Nevertheless, the intrinsic issues with existing scoring systems have not been addressed, and most of the models use methods that provide limited interpretability or explainability. In addition, no established AI-based radiographic scoring approaches have been proposed for PsA. This project aims to develop novel automated radiographic quantification schemes for RA and PsA which could provide finer details of the diseases by adopting interpretable and explainable Deep Learning (DL) techniques. A range of conventional machine learning and DL methods based on convolutional neural networks will be experimented with. We plan to employ the concept of similarity ranking that directly compares the anatomical structure in images to propose a more interpretable model for damage quantification. To provide explainability, post-hoc explanation methods such as feature weighting and visualisation of learned representations or models will be utilised as the baseline. Self-explainable model structures such as prototype variational encoders which learn the prototypes that may be linked to disease stages in the feature space and their projections in the input space will be explored as well.The developed damage assessment method could then be deployed on existing hand and feet X-ray datasets linked to electronic health records from RA or PsA patients to study disease trajectories. Subgroup analysis will be performed using clinical data to identify subtypes of disease progression and variations in treatment response. The performance of the proposed methods will be also validated using data from the retrospective clinical trials in the hope of generating novel discoveries.The proposed studies will establish new explainable automated quantification schemes for RA and PsA that could be applied to grant greater insight into the manifestation of the diseases in clinical settings and potential treatment or personal features that affect their progression in time. The project will be collaborative in its nature including collaboration with Oxford Psoriatic Arthritis Centre and Royal United Hospitals Bath. The project falls within the EPSRC Healthcare Technologies research theme and the Medical Imaging and AI Technologies research areas. It will lay the foundation for the development of clinically relevant RA and PsA evaluation tools to facilitate treatment decisions in the clinic and treatment effect assessments in clinical trials.
类风湿性关节炎(RA)和银屑病关节炎(PSA)是两种最常见的炎症性关节炎,可引起自身免疫性关节炎症,导致结构损伤、疼痛和患者严重残疾。目前对这些疾病的临床诊断和监测依赖于手、腕和脚的普通X光片来进行损害评估。已经提出了几种放射学评分系统,并将其用于临床研究和试验中,以进行损伤量化。然而,由于人工评分的复杂性、观察者之间的可变性以及无法描述疾病表现的详细变化,它们的应用受到限制,因此很难量化治疗效果和疾病进展。作为一个耗时的过程,评分在临床诊断和疾病进展监测中很少进行。随着人工智能(AI)的进步,已经提出了几个用于RA的自动放射诊断、分级和评分框架,显示出良好的性能。然而,现有评分系统的内在问题尚未得到解决,而且大多数模型使用的方法提供的解释性或可解释性有限。此外,还没有建立基于人工智能的放射学评分方法,用于PSA。本项目旨在开发新的针对RA和PSA的自动放射成像量化方案,通过采用可解释和可解释的深度学习(DL)技术来提供更详细的疾病细节。将对一系列基于卷积神经网络的传统机器学习和DL方法进行实验。我们计划采用相似性排序的概念,直接比较图像中的解剖结构,以提出一个更具解释性的损伤量化模型。为了提供可解释性,将使用特征加权和学习的表示或模型的可视化等事后解释方法作为基线。还将探索自解释的模型结构,例如原型变分编码器,它学习可能与特征空间中的疾病阶段相关的原型及其在输入空间中的投影。然后,开发的损伤评估方法可以部署在现有的手部和脚部X射线数据集上,这些数据集链接到RA或PSA患者的电子健康记录,以研究疾病轨迹。将使用临床数据进行亚组分析,以确定疾病进展的亚型和治疗反应的变化。建议的研究将为RA和PSA建立新的可解释的自动化量化方案,这些方案可用于更深入地了解疾病在临床环境中的表现以及影响其进展的潜在治疗或个人特征。该项目在性质上将是合作的,包括与牛津银屑病关节炎中心和皇家联合医院巴斯的合作。该项目属于EPSRC医疗保健技术研究主题以及医学成像和人工智能技术研究领域。这将为开发与临床相关的RA和PSA评估工具奠定基础,以促进临床上的治疗决策和临床试验中的治疗效果评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Trusted Interaction for Autonomous Vehicles in a Smart City
智能城市中自动驾驶汽车的可信交互
- 批准号:
24K15045 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
EOSC-ENTRUST: A European Network of TRUSTed research environments
EOSC-ENTRUST:欧洲值得信赖的研究环境网络
- 批准号:
10104655 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
CRII: SaTC: Enforcing Expressive Security Policies using Trusted Execution Environments
CRII:SaTC:使用可信执行环境执行表达性安全策略
- 批准号:
2348304 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
SBIR Phase I: SaiFE: Trusted AI with Hardware Security Enforcement
SBIR 第一阶段:SaiFE:具有硬件安全实施的可信人工智能
- 批准号:
2333126 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
RCP16390 EOSC-ENTRUST: A European Network of TRUSTed research environments
RCP16390 EOSC-ENTRUST:欧洲值得信赖的研究环境网络
- 批准号:
10109200 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
CAREER: AI-Enabled Self-Healing and Trusted Wireless Transceivers for Biomedical Applications
职业:用于生物医学应用的人工智能自我修复和可信无线收发器
- 批准号:
2339162 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
EOSC-ENTRUST: A European Network of TRUSTed research environments
EOSC-ENTRUST:欧洲值得信赖的研究环境网络
- 批准号:
10088076 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Secure, Privacy-aware, and Trusted Data Share in Smart Mobility
智能移动中的安全、隐私意识和可信数据共享
- 批准号:
EP/Y002946/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
The AI Advantage: Developing Trusted, Ethical & Accessible AI Augmented Human Decision Making & Automation for SMBs
人工智能的优势:发展值得信赖、道德的
- 批准号:
10076405 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant for R&D
Blockchain-based trusted platform for servers and devices security
基于区块链的服务器和设备安全可信平台
- 批准号:
10078077 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D