Human-AI Collaboration in Healthcare: AI-Enabled Adaptive Learning Systems
医疗保健领域的人机协作:人工智能支持的自适应学习系统
基本信息
- 批准号:2722218
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Human-AI collaboration (HAIC) describes systems whereby humans and artificial intelligence (AI) systems work in tandem to produce outcomes superior to independent solutions. Today, AI systems are beginning to be deployed in healthcare systems, for workflow optimisation, and potential economical and productivity benefits. They have been shown to encroach or even outperform the performance of trained experts in some clinical settings ([1]). However, these benefits do not come without drawbacks. Specific to the healthcare domain, AI such as deep learning models are susceptible to bias, can be prone to poor generalisation, and can produce uninterpretable predictions ([2]). Humans are, of course, also not without weaknesses. A study approximated that medical errors from radiologists rank as the third most significant cause of death, with an annual occurrence rate of up to 9.5% ([3]). The error rate can be attributed to several factors, such as high concentration, large workload and quick turnover, which contributes to fatigue of the radiologists ([4]). HAIC seeks to mitigate the individual weaknesses of humans and AI while leveraging their respective strengths, ultimately developing an enhanced system. HAIC encompasses a wide range of topics, including out-of-distribution generalisation, deferral-based systems, explainable AI, audio-visual computer vision, and multimodal AI models. In this DPhil project, our initial goal is to develop large multimodal language models for creating AI-enabled adaptive learning systems. For instance, sonographers face the demanding profession of maintaining high diagnostic precision in stressful situations with time constraints, which requires a high level of skill. Transferring expert knowledge and expertise to new trainees presents a significant challenge.Streamlining this time- and cost-intensive process can be achieved through HAIC by developing AI systems that convey task-specific expert knowledge to novice trainees while adapting to their evolving expertise levels over time. This project falls under the EPSRC's research area of human-computer interaction and will be carried out in collaboration with the OxSTaR (Oxford Simulation, Teaching, and Research) team. HAIC is a relatively new field in healthcare; therefore, there are many novel problems to address.Although there have been some preliminary developments in various types of AI-enabled adaptive learning systems, these have primarily been implemented in the education domain. There are no publications of similar work in the healthcare domain.References[1] Babak Ehteshami Bejnordi, Mitko Veta, Paul Johannes Van Diest, Bram Van Ginneken, NicoKarssemeijer, Geert Litjens, Jeroen AWM Van Der Laak, Meyke Hermsen, Quirine F Manson,Maschenka Balkenhol, et al. Diagnostic assessment of deep learning algorithms for detection oflymph node metastases in women with breast cancer. Jama, 318(22):2199-2210, 2017.[2] Milena A. Gianfrancesco, Suzanne Tamang, Jinoos Yazdany, and Gabriela Schmajuk. PotentialBiases in Machine Learning Algorithms Using Electronic Health Record Data. JAMA InternalMedicine, 178(11):1544-1547, 11 2018.[3] Martin A Makary and Michael Daniel. Medical error-the third leading cause of death in the us.Bmj, 353, 2016.[4] Stephen Waite, Srinivas Kolla, Jean Jeudy, Alan Legasto, Stephen L Macknik, Susana Martinez-Conde, Elizabeth A Krupinski, and Deborah L Reede. Tired in the reading room: the influence offatigue in radiology. Journal of the American College of Radiology, 14(2):191-197, 2017.
Human-Ai合作(HAIC)描述了人类和人工智能(AI)系统同时起作用的系统,以产生优于独立解决方案的结果。如今,AI系统开始在医疗保健系统中部署,以进行工作流程优化以及潜在的经济和生产力效益。他们已被证明在某些临床环境中侵占甚至胜过训练有素的专家的表现([1])。但是,这些好处并非没有缺点。特定于医疗保健领域,诸如深度学习模型之类的AI容易受到偏见的影响,可能容易受到概括的不良,并且可以产生无法解释的预测([2])。当然,人类也不是没有弱点。一项研究近似于放射科医生的医疗错误是第三大重要的死亡原因,年增长率高达9.5%([3])。错误率可以归因于几个因素,例如高浓度,大工作量和快速营业额,这导致了放射科医生的疲劳([4])。海克试图减轻人类和人工智能的个人弱点,同时利用各自的优势,最终发展增强的系统。 HAIC涵盖了广泛的主题,包括分布外的概括,基于延迟的系统,可解释的AI,视听计算机视觉和多模式AI模型。在这个DPHIL项目中,我们的最初目标是开发大型的多模式模型,以创建AI-ables Adipaptive学习系统。例如,超声检查员面临着苛刻的职业,即在压力很大的情况下保持高度诊断精度,这需要高水平的技能。将专家知识和专业知识转移给新学员带来了重大挑战。通过开发AI系统,可以通过HAIC来实现这一时间和成本密集的过程,这些AI系统可以随着时间的推移将特定于任务的专家知识传达给新手受训者,同时适应其不断发展的专业知识。该项目属于EPSRC的人力计算研究领域,并将与Oxstar(Oxford Simulation,Teachert和Research)团队合作进行。海克是医疗保健中相对较新的领域。因此,有许多新的问题需要解决。尽管在各种AI-na-a-apaptive自适应学习系统中有一些初步发展,但这些发展主要是在教育领域实施的。 There are no publications of similar work in the healthcare domain.References[1] Babak Ehteshami Bejnordi, Mitko Veta, Paul Johannes Van Diest, Bram Van Ginneken, NicoKarssemeijer, Geert Litjens, Jeroen AWM Van Der Laak, Meyke Hermsen, Quirine F Manson,Maschenka Balkenhol, et al.对乳腺癌女性检测远程淋巴结转移检测深度学习算法的诊断评估。 JAMA,318(22):2199-2210,2017年。[2] Milena A. Gianfrancesco,Suzanne Tamang,Jinoos Yazdany和Gabriela Schmajuk。使用电子健康记录数据的机器学习算法中的潜在次数。 Jama Internalmedicine,178(11):1544-1547,118。[3]马丁是马丁和迈克尔·丹尼尔。医疗错误 - 美国第三大死亡原因。BMJ,353,2016。[4] Stephen Waite,Srinivas Kolla,Jean Jeudy,Alan Legasto,Stephen L Macknik,Susana Martinez-Conde,Elizabeth A Krupinski和Deborah L Reede。在阅读室里疲倦:放射学的影响力。美国放射学院杂志,14(2):191-197,2017。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Metal nanoparticles entrapped in metal matrices.
- DOI:
10.1039/d1na00315a - 发表时间:
2021-07-27 - 期刊:
- 影响因子:4.7
- 作者:
- 通讯作者:
Stunting as a Risk Factor of Soil-Transmitted Helminthiasis in Children: A Literature Review.
- DOI:
10.1155/2022/8929025 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Aspirin use is associated with decreased inpatient mortality in patients with COVID-19: A meta-analysis.
- DOI:
10.1016/j.ahjo.2022.100191 - 发表时间:
2022-08 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Ged?chtnis und Wissenserwerb [Memory and knowledge acquisition]
- DOI:
10.1007/978-3-662-55754-9_2 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A Holistic Evaluation of CO2 Equivalent Greenhouse Gas Emissions from Compost Reactors with Aeration and Calcium Superphosphate Addition
曝气和添加过磷酸钙的堆肥反应器二氧化碳当量温室气体排放的整体评估
- DOI:
10.3969/j.issn.1674-764x.2010.02.010 - 发表时间:
2010-06 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
人机协同的绘画笔触序列规划与机器人绘制方法研究
- 批准号:62306319
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
知识型员工与人工智能合作中的管理挑战:信任难题、责任难题与技术框架
- 批准号:72302217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
从"人类-AI合作"视角出发的个人投资者—智能投顾合作模式研究
- 批准号:72371162
- 批准年份:2023
- 资助金额:40.00 万元
- 项目类别:面上项目
机器学习的数学理论与应用天元数学高级研讨班
- 批准号:12026430
- 批准年份:2020
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
基于深度学习的联合作战态势智能辅助分析研究
- 批准号:61773399
- 批准年份:2017
- 资助金额:16.0 万元
- 项目类别:面上项目
相似海外基金
Shared Post-Human Imagination: Human-AI Collaboration in Media Creation
共享的后人类想象力:媒体创作中的人机协作
- 批准号:
AH/Z50564X/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CHS: Smal: AI-Human Collaboration in Autonomous Vehicles for Safety and Security
CHS:Smal:自动驾驶汽车中的人工智能与人类协作以确保安全
- 批准号:
2245055 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
AI-Human Collaboration: Zero-shot coordination of independently trained agents
人工智能与人类协作:独立训练的智能体的零样本协调
- 批准号:
2750994 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
CRII: HCC: Empowering Human-AI Collaboration through Conversational Explanations
CRII:HCC:通过对话解释增强人类与人工智能的协作
- 批准号:
2153509 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant