Diamond Devices for Extreme Environmental Sensing
用于极端环境传感的金刚石器件
基本信息
- 批准号:2723520
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The move to a net-zero carbon economy means we have to be more efficient in the way we use the planet's resources and know more about the effect that our need for energy is having on our environment. Thus, the need for devices capable of trace chemical detection when deployed remotely in extreme conditions has never been greater. Such locations may be on-shore or off-shore, be for pollution detection or the identification of valuable geological sites. For example, both on-shore and deep ocean sites are considered potential regions for carbon storage. Conventional electronic sensor technologies typically use materials such as silicon that are not able to withstand the chemically and physically challenging environments that we increasingly need to place sensors for environmental monitoring. Raman spectroscopy is an excellent technique for chemical identification in, for example, marine environments or those that are geologically remote, as it is based on optical detection, but alone it is insufficiently sensitive for the necessary trace-level sensing.Surface-enhanced Raman Spectroscopy (SERS) on the other hand can be up to one-billion times as sensitive as standard Raman. SERS involves nano-sized particles or surface features that can display plasmonic resonance when under illumination. However, SERS measurements are restricted to the laboratory environment due to the fragile nature of these plasmonic SERS substrates. Diamond, though widely known as a gemstone, can now be grown in a laboratory and has excellent optical properties for this application. Both the incorporation of metallic nanoparticles within a diamond film and the use of nanostructured plasmonic diamond surfaces are being explored here at UCL to enable the first robust SERS technology to developed for detection of a range of species within extreme onshore and off-shore environments.For this experimentally based PhD, the successful candidate will join the enthusiastic and friendly Diamond Electronics Group (DEG) led by Professor Jackman and will enjoy the prospect of device fabrication in the LCN's state-of-the-art cleanroom facilities, using tools such as scanning probe microscopes and atomic layer deposition systems, as well as growing diamond using 'plasma' chemical vapour deposition methods. The This EPSRC PhD project is sponsored by Schlumberger Cambridge Research Centre with whom the student will actively collaborate. Schlumberger plays an important role to play in the global energy transition, with a vision to define and drive high performance sustainably, sharing the responsibility to act now and to act fast to decarbonize the world's energy system.
向净零碳经济的转变意味着我们必须更有效地利用地球资源,更多地了解我们对能源的需求对环境的影响。因此,在极端条件下远程部署时,对能够检测微量化学物质的设备的需求从未像现在这样大。这些地点可以是岸上的,也可以是离岸的,以便进行污染探测或确定有价值的地质地点。例如,岸上和深海地点都被认为是碳储存的潜在区域。传统的电子传感器技术通常使用硅等材料,这些材料无法承受化学和物理上的挑战,而我们越来越需要放置传感器进行环境监测。拉曼光谱学是一种极好的化学鉴定技术,例如在海洋环境或地质偏远的环境中,因为它是基于光学探测的,但单独使用它对必要的痕量感测不够敏感。另一方面,表面增强拉曼光谱(SERS)的灵敏度可以达到标准拉曼光谱的10亿倍。SERS涉及纳米级粒子或表面特征,在光照下可以显示等离子共振。然而,由于这些等离子体SERS衬底的脆弱性,SERS测量仅限于实验室环境。钻石虽然被广泛认为是一种宝石,但现在可以在实验室中生长,并且具有出色的光学特性。伦敦大学学院正在探索在金刚石薄膜中加入金属纳米颗粒和纳米结构等离子体金刚石表面的使用,从而开发出第一个强大的SERS技术,用于在极端的陆上和海上环境中检测一系列物种。对于这个以实验为基础的博士学位,成功的候选人将加入由Jackman教授领导的热情友好的钻石电子集团(DEG),并将享受在LCN最先进的洁净室设施中制造设备的前景,使用扫描探针显微镜和原子层沉积系统等工具,以及使用“等离子体”化学气相沉积方法生长钻石。该EPSRC博士项目由斯伦贝谢剑桥研究中心赞助,学生将与该中心积极合作。斯伦贝谢在全球能源转型中发挥着重要作用,其愿景是定义和推动可持续的高性能,并共同承担责任,立即采取行动,迅速采取行动,以实现世界能源系统的脱碳。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
兼捕减少装置(Bycatch Reduction Devices, BRD)对拖网网囊系统水动力及渔获性能的调控机制
- 批准号:32373187
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Diamond Devices for extreme applications
适用于极端应用的金刚石装置
- 批准号:
EP/X000176/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Diamond Devices for extreme applications
适用于极端应用的金刚石装置
- 批准号:
EP/X00029X/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Theory for Quantum Correlations in Extreme Nanoplasmonic Devices
极端纳米等离子体装置中的量子相关理论
- 批准号:
2744064 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
CAREER: Towards Metamaterial-inspired Networking for Wireless Devices in Extreme Environments
职业:在极端环境中实现受超材料启发的无线设备网络
- 批准号:
1652502 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Continuing Grant
Extreme Efficiency Power Converter using Gallium Nitride Semiconductor Devices
使用氮化镓半导体器件的极高效率电源转换器
- 批准号:
515640-2017 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Glass micro and nano smithing of devices and sensors for extreme environments
适用于极端环境的设备和传感器的玻璃微纳米锻造
- 批准号:
DP140100975 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Discovery Projects
PLASMONICS FOR EXTREME LIGHT CONCENTRATION IN SOLAR CELL DEVICES
用于太阳能电池设备中极端聚光的等离子体激元
- 批准号:
405178-2011 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
PLASMONICS FOR EXTREME LIGHT CONCENTRATION IN SOLAR CELL DEVICES
用于太阳能电池设备中极端聚光的等离子体激元
- 批准号:
405178-2011 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
X-MED: EXtreme Loading of Marine Energy Devices due to Waves, Current, Flotsam and Mammal Impact
X-MED:由于波浪、海流、漂浮物和哺乳动物撞击而导致海洋能源设备的极端负载
- 批准号:
EP/J010235/1 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grant
PLASMONICS FOR EXTREME LIGHT CONCENTRATION IN SOLAR CELL DEVICES
用于太阳能电池设备中极端聚光的等离子体激元
- 批准号:
405178-2011 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral