A new foundation for mathematics. Naïve set theory in HYPE
数学的新基础。
基本信息
- 批准号:2732306
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Set theory, the theory studying collections in mathematics, is widely regarded to be the foundational framework for all of mathematical knowledge. However, the original formulation of the theory, despite having a strong philosophical justification, was susceptible to paradoxes, both philosophical and mathematical in nature, which can be traced back to the presence of intuitively justified mathematical entities behaving in a viciously circular way. A standard way to avoid the paradoxes is based on a theory which bans circularity: however, in many mathematical settings, this very circularity seems desirable, and an intrinsic feature of languages. The aim of this project is to build a theory which restores the lost circularity and philosophical intuitiveness, while being paradox-free. To do so, we will need to modify the system of reasoning which underlies the theory, and adopt a so-called non-classical logic. We choose to study non-classical logics with a strong conditional, which have the advantage of being relatively flexible to deal with paradoxes, while maintaining a certain mathematical strength. One example of such logic is HYPE, developed by Hannes Leitgeb in 2019. HYPE is presented as a hyperintensional logic, i.e. a system of reasoning which is suitable to deal with fine-grained logical contexts, such as contexts which deal with properties or belief. Using HYPE to develop a set theory is interesting for two reasons: firstly, it allows us to bring back the original, or naïve notion of set, which views collections as extensions of concepts, in a consistent way. Secondly, while having a relatively well-behaved consequence relation, it has a very flexible semantics, which allows us to model circular entities easily. The project will be devoted to finding new, mathematically viable solutions to the paradoxes of set theory by finding new alternative set theories with a sufficient mathematical content. The focus of the project will be mostly semantical in nature: we will study different theories based on their models, to investigate how they model circular entities, starting from a semantical treatment of a set theory based on HYPE. The aim of the project is to find a theory with a good balance between non-classicality and strength, and to investigate the advantages of employing logics with strong conditionals in set theory. This study, conducted with rigorous mathematical techniques, will shed light on longstanding and deep questions in the philosophy of mathematics, such as the status of circularity, and, if successful, will deliver a new framework which will be of interest to mathematicians, computer scientists and foundationally-minded scientists.
集合论是数学中研究集合的理论,被广泛认为是所有数学知识的基础框架。然而,该理论的原始表述,尽管具有强大的哲学依据,但在哲学和数学本质上都容易受到悖论的影响,这可以追溯到直觉上被证明的数学实体以恶性循环的方式运行。避免悖论的标准方法是基于一个禁止循环的理论:然而,在许多数学设置中,这种循环似乎是可取的,并且是语言的内在特征。这个项目的目的是建立一个理论,恢复失去的循环和哲学直观性,同时没有悖论。要做到这一点,我们需要修改作为理论基础的推理系统,并采用所谓的非经典逻辑。我们选择研究具有强条件的非经典逻辑,其优点是在处理悖论时相对灵活,同时保持一定的数学强度。这种逻辑的一个例子是由Hannes Leitgeb在2019年开发的HYPE。HYPE表现为一种高内涵逻辑,即一种适合处理细粒度逻辑上下文的推理系统,例如处理属性或信念的上下文。使用HYPE来发展集合论很有趣,原因有二:首先,它允许我们以一致的方式带回原始的或naïve集合概念,它将集合视为概念的扩展。其次,虽然它有一个相对良好的结果关系,但它有一个非常灵活的语义,这使得我们可以很容易地对循环实体建模。该项目将致力于通过寻找具有足够数学内容的新的替代集合理论来寻找新的,数学上可行的集合理论悖论的解决方案。该项目的重点将主要是语义性质:我们将基于模型研究不同的理论,以研究它们如何对循环实体建模,从基于HYPE的集合理论的语义处理开始。项目的目的是寻找一个在非经典性和强度之间有良好平衡的理论,并研究在集合论中使用具有强条件的逻辑的优势。这项研究采用严格的数学技术进行,将阐明数学哲学中长期存在的深刻问题,如圆的地位,如果成功,将提供一个数学家,计算机科学家和基础科学家感兴趣的新框架。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Innovating the foundation of Ising spin glass theory by an approach from discrete mathematics
通过离散数学方法创新伊辛自旋玻璃理论的基础
- 批准号:
23K03192 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Math Now for Success Later: An Investigation of the Understanding of Basic Arithmetic as a Foundation for Later Mathematics and STEM success
现在的数学是为了以后的成功:对基本算术的理解作为以后数学和 STEM 成功的基础的调查
- 批准号:
DDG-2021-00005 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Development Grant
Collaborative Research: Normalizing Ethical Reasoning in Mathematics as a Foundation for Ethical STEM
合作研究:规范数学道德推理作为道德 STEM 的基础
- 批准号:
2220423 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Normalizing Ethical Reasoning in Mathematics as a Foundation for Ethical STEM
合作研究:规范数学道德推理作为道德 STEM 的基础
- 批准号:
2220395 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Normalizing Ethical Reasoning in Mathematics as a Foundation for Ethical STEM
合作研究:规范数学道德推理作为道德 STEM 的基础
- 批准号:
2220314 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Math Now for Success Later: An Investigation of the Understanding of Basic Arithmetic as a Foundation for Later Mathematics and STEM success
现在的数学是为了以后的成功:对基本算术的理解作为以后数学和 STEM 成功的基础的调查
- 批准号:
DDG-2021-00005 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Development Grant
Building the Foundation for Noyce Master Teaching Fellowships in Mathematics
为诺伊斯数学硕士教学奖学金奠定基础
- 批准号:
2050642 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
A Set-Theoretical Foundation for Formalised Mathematics
形式化数学的集合论基础
- 批准号:
2273715 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Studentship
Travel Support for National Science Foundation's Science, Technology, Engineering, and Mathematics (NSF STEM) Careers Fair 2013; Dulles, Virginia; September 27-28, 2013
2013 年美国国家科学基金会科学、技术、工程和数学 (NSF STEM) 招聘会的差旅支持;
- 批准号:
1355969 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
Establishing the foundation of discrete mathematics in the field of architecture and urban planning and its application to large-scale optimization
建立建筑和城市规划领域的离散数学基础及其在大规模优化中的应用
- 批准号:
25240004 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)














{{item.name}}会员




