Equivariant Homotopy-Invariant Commutative Algebra
等变同伦不变交换代数
基本信息
- 批准号:2737776
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
My project involves generalisation of ideas from commutative algebra to stable homotopy theory. In particular, many duality phenomena throughout algebra and algebraic topology can be expressed in terms of the Gorenstein property of ring spectra over a field in the sense of Dwyer-Greenlees-Iyengar. This has been studied extensively, and an aim of mine is to explore this in an equivariant context. For ring spectra with G-action, a big question is to see when the Gorenstein property descends from the ring to the homotopy-fixed point spectrum. Examples include the complex theory spectrum (and its connective cover) with the action of conjugation, and classically in algebra a theorem of Watanabe for polynomial invariant rings. It is also of interest to consider genuine ring G-spectra, whose Gorenstein shifts have an RO(G)-graded shift. Examples include singular cochains on the double cover of an orientable manifold, equivariant via deck transformations, where Poincaré duality is recovered with an appropriate twist.Another commutative-algebraic notion that can be considered in stable homotopy theory is the singularity category, defined for ring spectra by Greenlees-Stevenson. A crucial example is the cochains on the classifying space of a compact Lie group - a project of mine has been to adapt a notion of the ``nucleus'' in modular representation theory to a more topological context, where I have shown it to coincide with the support of the singularity category of the cochains, as conjectured in the original context by Benson-Greenlees. I expect understanding this support theory for singularity categories of ring spectra will form a part of my project, especially in using it to classify thick subcategories for hypersurface ring spectra - possibly extending results of Stevenson and Takahashi with discrete rings.
我的项目涉及从交换代数到稳定同伦理论的思想泛化。特别地,在整个代数和代数拓扑中,许多对偶现象都可以用Dwyer-Greenlees-Iyengar意义下的环谱的Gorenstein性质来表示。这已经得到了广泛的研究,我的一个目的是在一个等变的背景下探索这一点。对于具有G作用的环谱,一个很大的问题是看Gorenstein性质何时从环下降到同伦不动点谱。例子包括具有共轭作用的复理论谱(及其连通覆盖),以及经典的代数中关于多项式不变环的渡边定理。考虑真正的环G-谱也很有趣,它的Gorenstein位移具有RO(G)分次位移。例子包括可定向流形的双重覆盖上的奇异余链,通过甲板变换等变,其中Poincaré对偶通过适当的扭曲被恢复。另一个可在稳定同伦理论中考虑的交换代数概念是奇点范畴,由Greenlees-Stevenson为环谱定义。一个重要的例子是紧李群的分类空间上的余链--我的一个项目是将模表示理论中的“核”的概念改编到更具拓扑性的背景下,在那里我已经证明了它与Benson-Greenlees在原始背景下猜测的余链的奇点范畴的支持相一致。我期望对环谱奇点范畴的这一支持理论的理解将成为我项目的一部分,特别是在使用它来对超曲面环谱的厚子范畴进行分类时--可能用离散环推广Stevenson和Takahashi的结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Motivic Homotopy Theory, Stable Homotopy Groups of Spheres and the Kervaire Invariant
动机同伦理论、球面稳定同伦群和 Kervaire 不变量
- 批准号:
2043485 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Motivic Homotopy Theory, Stable Homotopy Groups of Spheres and the Kervaire Invariant
动机同伦理论、球面稳定同伦群和 Kervaire 不变量
- 批准号:
1810638 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
A study on homotopy sets and families of homotopy invariant subsets
同伦集和同伦不变子集族的研究
- 批准号:
15K04884 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Extending Kervaire invariant methods in stable homotopy theory
在稳定同伦理论中扩展 Kervaire 不变方法
- 批准号:
1307896 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
Homotopy theory on singularities of differentiable maps and K-invariant spaces of the jet spaces
可微映射奇点与射流空间K不变空间的同伦理论
- 批准号:
21540085 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
U.S.-Czech Mathematics Research on Homotopy Invariant Algebraic Structures
美捷数学同伦不变代数结构研究
- 批准号:
0203119 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Standard Grant
Homotopy theory and invariant theory
同伦论和不变论
- 批准号:
8892-1999 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Homotopy theory and invariant theory
同伦论和不变论
- 批准号:
8892-1999 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Homotopy theory and invariant theory
同伦论和不变论
- 批准号:
8892-1999 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Global Study of the Stable Homotopy Category and the Kervaire Invariant Problem
稳定同伦范畴和Kervaire不变问题的全局研究
- 批准号:
11640072 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)