Complex Nanocomposites for Bone Regeneration

用于骨再生的复杂纳米复合材料

基本信息

项目摘要

DESCRIPTION (provided by applicant): This Bioengineering Research Partnership proposal is submitted by a multidisciplinary collaboration of scientists primarily affiliated with the University of California (UC) system. The lead institution is Lawrence Berkeley National Laboratory, with component groups at UC Berkeley and San Francisco campuses. There is also small business collaborator from SkeleTech, Inc., in Bothell, WA. Some of the collaborators have worked together on ceramic projects for over 20 years, while others have worked together on dental research projects for over 10 years. This team has been expanded to include greater expertise in all the disciplines involved in this proposal: materials science, chemistry, biology, and dental/medical science. The research is aimed at development and testing of new implant materials by combining biomimetics with two radically new design philosophies to produce dense and strong bioactive scaffolds that are intended to be partially or completely resorbed and replaced by bone from the host in a sequence resembling bone remodeling. The ultimate goal is to develop strong and tough implant materials for load-bearing applications deriving their strength from nanoparticle hydroxyapatite and their toughness from hydrogel polymers, with the microstructural architecture scale on the order of tens of nanometers and below. Three types of materials will be developed. First, inorganic scaffolds with a dense core and a graded distribution of porosity and surface chemistry will be fabricated by stereolithography and by a novel technology developed in our laboratory based on freeze casting of calcium phosphate suspensions. Second, hydrogels and self-assembling polymers that possess anionic groups and adhesive ligands suitably positioned for the nucleation process and cellular adhesion will be used to direct templatedriven biomimetic mineralization of hydroxyapatite and other biominerals in nanoscopically and microscopically controlled fashion. Third, the resultant porous scaffolds will be used as the matrices to fabricate inorganic-organic composites with improved strength and fracture resistance. This will be achieved by infiltration of the inorganic scaffolds with hydrogels or by direct template-driven biomimetic mineralization of calcium phosphate nanoparticles on the organic scaffolds. Materials that pass the mechanical property tests will be tested in cell cultures and an animal model. Improvement of implants will result in improved health and quality of life for the millions of people who will need implants in the future.
描述(由申请人提供): 这个生物工程研究伙伴关系的建议是由一个多学科的合作,主要是附属于加州大学(UC)系统的科学家提交。牵头机构是劳伦斯伯克利国家实验室,在加州大学伯克利分校和旧金山弗朗西斯科校区设有组成小组。还有来自SkeleTech,Inc.的小企业合作者,在华盛顿州的博瑟尔。一些合作者在陶瓷项目上合作了20多年,而另一些合作者在牙科研究项目上合作了10多年。该团队已扩大到包括本提案所涉及的所有学科的更多专业知识:材料科学,化学,生物学和牙科/医学科学。该研究旨在通过将仿生学与两种全新的设计理念相结合来开发和测试新的植入物材料,以产生致密且坚固的生物活性支架,这些支架旨在部分或完全被吸收并以类似于骨重建的顺序被宿主的骨替代。最终目标是开发用于承重应用的坚固且坚韧的植入物材料,其强度来自纳米羟基磷灰石,其韧性来自水凝胶聚合物,其微结构架构尺度为数十纳米及以下。将开发三种材料。首先,无机支架与致密的核心和梯度分布的孔隙度和表面化学将制造立体光刻和在我们的实验室开发的一种新技术的基础上冷冻铸造磷酸钙悬浮液。第二,水凝胶和自组装聚合物,具有阴离子基团和粘合剂配体适当定位成核过程和细胞粘附将被用来直接模板驱动的仿生矿化的羟基磷灰石和其他生物矿物在纳米和微观控制的方式。第三,所得多孔支架将被用作基质,以制造具有改善的强度和抗断裂性的无机-有机复合材料。这将通过用水凝胶渗透无机支架或通过磷酸钙纳米颗粒在有机支架上的直接模板驱动仿生矿化来实现。通过机械性能试验的材料将在细胞培养物和动物模型中进行试验。植入物的改进将改善未来数百万需要植入物的人的健康和生活质量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ANTONI P TOMSIA其他文献

ANTONI P TOMSIA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ANTONI P TOMSIA', 18)}}的其他基金

Complex Nanocomposites for Bone Regeneration
用于骨再生的复杂纳米复合材料
  • 批准号:
    6883202
  • 财政年份:
    2003
  • 资助金额:
    $ 68.08万
  • 项目类别:
Complex Nanocomposites for Bone Regeneration
用于骨再生的复杂纳米复合材料
  • 批准号:
    7662868
  • 财政年份:
    2003
  • 资助金额:
    $ 68.08万
  • 项目类别:
Complex Nanocomposites for Bone Regeneration
用于骨再生的复杂纳米复合材料
  • 批准号:
    7934472
  • 财政年份:
    2003
  • 资助金额:
    $ 68.08万
  • 项目类别:
Complex Nanocomposites for Bone Regeneration
用于骨再生的复杂纳米复合材料
  • 批准号:
    6787134
  • 财政年份:
    2003
  • 资助金额:
    $ 68.08万
  • 项目类别:
Complex Nanocomposites for Bone Regeneration
用于骨再生的复杂纳米复合材料
  • 批准号:
    7238613
  • 财政年份:
    2003
  • 资助金额:
    $ 68.08万
  • 项目类别:
Complex Nanocomposites for Bone Regeneration
用于骨再生的复杂纳米复合材料
  • 批准号:
    8510621
  • 财政年份:
    2003
  • 资助金额:
    $ 68.08万
  • 项目类别:
Complex Nanocomposites for Bone Regeneration
用于骨再生的复杂纳米复合材料
  • 批准号:
    8082623
  • 财政年份:
    2003
  • 资助金额:
    $ 68.08万
  • 项目类别:
Complex Nanocomposites for Bone Regeneration
用于骨再生的复杂纳米复合材料
  • 批准号:
    8272456
  • 财政年份:
    2003
  • 资助金额:
    $ 68.08万
  • 项目类别:
Environmental Field Emission Analytical SEM
环境场发射分析扫描电镜
  • 批准号:
    6501283
  • 财政年份:
    2003
  • 资助金额:
    $ 68.08万
  • 项目类别:
Complex Nanocomposites for Bone Regeneration
用于骨再生的复杂纳米复合材料
  • 批准号:
    6648199
  • 财政年份:
    2003
  • 资助金额:
    $ 68.08万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了