Mechanisms of arsenical transport
砷迁移机制
基本信息
- 批准号:7114371
- 负责人:
- 金额:$ 41.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-05-01 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:Escherichia coliRhizobiaceaeSaccharomyces cerevisiaeadenosinetriphosphataseantimonyarsenicbacterial geneticsbacterial proteinsbiological signal transductionbiological transportchemical kineticsdrug resistanceenzyme induction /repressionintermolecular interactionmembrane transport proteinsmolecular chaperonesmolecular siteprotein structure functionstoichiometrywater channel
项目摘要
DESCRIPTION (provided by applicant): Arsenic enters human body from both geological and anthropogenic sources. Because of the ubiquity of arsenic in the environment, every organism has developed transport systems for the efflux and detoxification of arsenic. Chronic exposure to arsenic has been linked to cardiovascular and peripheral vascular diseases, neurological disorders, diabetes and various cancers. Arsenic-containing drugs are used as chemotherapeutic agents for the treatment of leukemia and parasitic diseases. An understanding of both arsenic chemistry and the molecular details of arsenic transport systems is essential for alleviating the problems of arsenic toxicity, as well as for the rational design of drugs to treat drug-resistant microbes and cancer cells. We have identified aquaglyceroporins as a major pathway for trivalent arsenical [As(lll)] uptake in organisms from E. coli to humans. We have also shown that As(lll) is transported by hexose permeases in yeast and humans. The overall goal of this proposal is elucidation of the molecular mechanisms of arsenic transport in microorganisms. The presence of arsenic resistance (ars) genes in the genome of every living organism sequenced to date illustrates first that ars genes must be ancient and second that arsenic must still be ubiquitous in the environment, providing the selective pressure that maintains them in present-day organisms. The first specific aim proposes to study the mechanisms of uptake of trivalent arsenic by aquaglyceroporins and hexose permeases in two bacteria (E. coli and Sinorhizobium meliloti), and, for comparative purposes, in the eukaryotic microorganism Saccharomyces cerevisiae. In particular, the mechanism of substrate selectivity that allows arsenic transport will be determined. The second specific aim is a detailed structure-function analysis of the ArsAB As(lll)-translocating ATPase, the best-characterized detoxification system for trivalent arenic. This arsenic extrusion pump is encoded by the arsenical resistance operon of the clinically isolated resistance plasmid R773. The project entails detailed molecular analysis of the nucleotide binding domains, metal binding sites and signal transduction domains of the ArsA ATPase, as well as the way in which ArsA interacts with ArsB, the membrane component of the pump. Finally, the interaction of the new and novel arsenic chaperone protein, ArsD, with the ArsAB pump will be studied.
描述(由申请人提供):砷通过地质和人为来源进入人体。由于砷在环境中的普遍存在,每种生物都发展了砷的外排和解毒的运输系统。长期接触砷与心血管和外周血管疾病、神经系统疾病、糖尿病和各种癌症有关。含砷药物被用作治疗白血病和寄生虫病的化疗剂。了解砷化学和砷转运系统的分子细节对于缓解砷毒性问题以及合理设计药物治疗耐药微生物和癌细胞至关重要。我们已经确定了水甘油孔蛋白作为三价砷[As(III)]在生物体中的主要途径,从E.大肠杆菌感染人类。我们还表明,作为(III)是由酵母和人类的己糖渗透酶。本提案的总体目标是阐明砷在微生物中转运的分子机制。目前测序的每一个生物体的基因组中都存在抗砷基因,这首先说明抗砷基因一定是古老的,其次说明砷在环境中一定仍然无处不在,提供了选择压力,使它们在现代生物体中得以维持。第一个具体目标是研究两种细菌(E。coli和苜蓿中华根瘤菌(Sinorhizobium meliloti)),并且为了比较的目的,在真核微生物酿酒酵母(Saccharomyces cerevisiae)中。特别是,基板的选择性,允许砷运输的机制将被确定。第二个具体目标是详细的结构-功能分析的ArsAB As(III)-易位ATP酶,最好的特点解毒系统的三价芳烃。这种砷挤出泵由临床分离的抗性质粒R773的砷抗性操纵子编码。该项目需要对ArsA ATP酶的核苷酸结合结构域、金属结合位点和信号转导结构域进行详细的分子分析,以及ArsA与ArsB(泵的膜组分)相互作用的方式。最后,新的和新颖的砷伴侣蛋白,ArsD,与ArsAB泵的相互作用将进行研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BARRY P. ROSEN其他文献
BARRY P. ROSEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BARRY P. ROSEN', 18)}}的其他基金
MECHANISMS OF ARSENIC TRANSPORT AND BIOTRANSFORMATIONS
砷转运和生物转化机制
- 批准号:
10595533 - 财政年份:2020
- 资助金额:
$ 41.53万 - 项目类别:
MECHANISMS OF ARSENIC TRANSPORT AND BIOTRANSFORMATIONS
砷转运和生物转化机制
- 批准号:
9923901 - 财政年份:2020
- 资助金额:
$ 41.53万 - 项目类别:
MECHANISMS OF ARSENIC TRANSPORT AND BIOTRANSFORMATIONS
砷转运和生物转化机制
- 批准号:
10374036 - 财政年份:2020
- 资助金额:
$ 41.53万 - 项目类别:
XAS STUDIES OF NOVEL ARSENIC BINDING SITES IN AS(III)-RESPONSIVE TRANSCRIPTIONAL
AS(III) 响应转录中新型砷结合位点的 XAS 研究
- 批准号:
8170040 - 财政年份:2010
- 资助金额:
$ 41.53万 - 项目类别:
XAS STUDIES OF NOVEL ARSENIC BINDING SITES IN AS(III)-RESPONSIVE TRANSCRIPTIONAL
AS(III) 响应转录中新型砷结合位点的 XAS 研究
- 批准号:
7954364 - 财政年份:2009
- 资助金额:
$ 41.53万 - 项目类别:
XAS STUDIES OF NOVEL ARSENIC BINDING SITES IN AS (III)-RESPONSIVE TRANSCRIPTIONA
AS (III) 响应转录中新型砷结合位点的 XAS 研究
- 批准号:
7722025 - 财政年份:2008
- 资助金额:
$ 41.53万 - 项目类别:
XAS STUDIES OF NOVEL ARSENIC BINDING SITES IN AS (III)-RESPONSIVE TRANSCRIPTIONA
AS (III) 响应转录中新型砷结合位点的 XAS 研究
- 批准号:
7598285 - 财政年份:2007
- 资助金额:
$ 41.53万 - 项目类别:
相似海外基金
Dissertation Research: Coevolution in the Legume-Rhizobiaceae Symbiosis: A Phylogenetic Test of Codivergence
论文研究:豆科植物-根瘤菌科共生的共同进化:共分化的系统发育测试
- 批准号:
9623537 - 财政年份:1996
- 资助金额:
$ 41.53万 - 项目类别:
Standard Grant
Cyclic Beta Glucans of the Rhizobiaceae
根瘤菌科的环状β葡聚糖
- 批准号:
9505706 - 财政年份:1995
- 资助金额:
$ 41.53万 - 项目类别:
Standard Grant