Deep Generative Models of Fetal Brain Development: forward modelling of the mechanisms of neurodevelopmental impairment
胎儿大脑发育的深层生成模型:神经发育障碍机制的正向建模
基本信息
- 批准号:2741200
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Aim of the PhD Project:Develop novel techniques for surface-to-volume image registration consolidating concepts from discrete and deep optimisation Incorporate biomechanical and biophysical models of brain growth and folding Build generative forward models of neurodevelopment from fetal and neonatal MRI Investigate extensive opportunities for clinical translation following preterm birth, congenital heart disease and epilepsy Project description:Over the period of late gestation, the fetal brain undergoes a period of rapid development. Neuronal cells make distant connections, laying down a network of communication that will later support complex cognition. The rapid growth of cells in the cortex, the outer layer of the brain, creates biomechanical tensions which cause the surface to fold. Disruptions to this process, for example resulting from preterm birth or prenatal conditions such as congenital heart disease, can result in long-term neurodevelopmental impairments such as Autism, ADHE and epilepsy. The objective of this project is to build a forward model of this process, through which pathways of brain injury may be simulated, and the causes of neurodevelopmental impairment be understood. This project extends from previous work that built average models of brain growth using a combination of image registration and Gaussian process regression [1]. This model showed strong potential for the modelling the deviation of preterm development from healthy, at the centre of the brain. But struggled to model the cortex, where considerable variation of individual's brain shape and patterns of cortical organisation make comparison across scans much more difficult. The work also incorporates ideas from [2,3] which built a deep generative model for image-to-image translation and used it to derive feature attribution (FA) maps that highlight all evidence of pathology in individual brains. This is achieved by learning a mapping that changes an image backwards from categorised as diseased towards being classified as healthy. Neither of these projects presented a forward or mechanistic model of disease; however, in [4,5] we propose a novel biomechanical models of brain atrophy following dementia. This supports simulation of the trajectory of brain atrophy under different disease states or conditions: healthy ageing, mild cognitive impairment or full Alzheimer's disease. Accordingly in this project we seek to integrate these ideas to develop a deep generative biomechanical model of cortical growth from late gestation to birth. This will extend the ideas of [4,5] integrating novel models of cortical folding [5] and techniques from the domain of cortical surface registration [6,7] to learn to model longitudinal mappings between an individual's fetal and neonatal scans. Then will adapt ideas from image-to-image models for phenotype translation [2,3] to change tissue contrast and appearance. In this way simultaneously simulating changes in shape, size and tissue maturation.
博士项目的目的:开发新的表面到体积图像配准技术,从离散和深度优化中巩固概念,结合大脑生长和折叠的生物力学和生物物理模型,从胎儿和新生儿MRI中建立神经发育的生成前向模型,研究早产、先天性心脏病和癫痫后临床转化的广泛机会。神经元细胞进行远距离连接,建立一个通信网络,稍后将支持复杂的认知。大脑皮层(大脑的外层)细胞的快速生长产生了生物力学张力,导致表面折叠。这一过程的中断,例如由早产或先天性心脏病等产前条件引起的中断,可能导致长期神经发育障碍,如自闭症,ADHE和癫痫。本项目的目标是建立一个这一过程的正向模型,通过该模型可以模拟脑损伤的途径,并了解神经发育障碍的原因。该项目扩展了以前的工作,即使用图像配准和高斯过程回归的组合建立大脑生长的平均模型[1]。该模型显示出在大脑中心对早产发育与健康的偏差进行建模的强大潜力。但是很难对大脑皮层进行建模,因为个体大脑形状和大脑皮层组织模式的巨大差异使得扫描之间的比较更加困难。这项工作还结合了[2,3]的思想,该思想建立了一个用于图像到图像翻译的深度生成模型,并使用它来导出特征归因(FA)图,突出了个体大脑中病理学的所有证据。这是通过学习一种映射来实现的,该映射将图像从被分类为患病向后改变为被分类为健康。这些项目都没有提出疾病的前瞻性或机械模型;然而,在[4,5]中,我们提出了痴呆后脑萎缩的新生物力学模型。这支持在不同疾病状态或条件下模拟脑萎缩的轨迹:健康老龄化,轻度认知障碍或完全阿尔茨海默病。因此,在这个项目中,我们试图整合这些想法,以开发一个从妊娠后期到出生的皮质生长的深层生成生物力学模型。这将扩展[4,5]的想法,整合皮质折叠的新模型[5]和皮质表面配准领域的技术[6,7],以学习对个体胎儿和新生儿扫描之间的纵向映射进行建模。然后将从图像到图像模型的想法适用于表型转换[2,3],以改变组织对比度和外观。以这种方式同时模拟形状、大小和组织成熟的变化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
- DOI:
10.1002/cam4.5377 - 发表时间:
2023-03 - 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
- DOI:
10.1186/s12889-023-15027-w - 发表时间:
2023-03-23 - 期刊:
- 影响因子:4.5
- 作者:
- 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
- DOI:
10.1007/s10067-023-06584-x - 发表时间:
2023-07 - 期刊:
- 影响因子:3.4
- 作者:
- 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
- DOI:
10.1186/s12859-023-05245-9 - 发表时间:
2023-03-26 - 期刊:
- 影响因子:3
- 作者:
- 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
- DOI:
10.1039/d2nh00424k - 发表时间:
2023-03-27 - 期刊:
- 影响因子:9.7
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
SG: Species Distribution Modeling on the A.I. frontier: Deep generative models for powerful, general and accessible SDM
SG:人工智能上的物种分布建模
- 批准号:
2329701 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Development of data-driven multiple sound spot synthesis technology based on deep generative neural network models
基于深度生成神经网络模型的数据驱动多声点合成技术开发
- 批准号:
23K11177 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a Realistic LiDAR Simulator based on Deep Generative Models
基于深度生成模型的现实 LiDAR 模拟器的开发
- 批准号:
23K16974 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
GNOMON: Deep Generative Models in non-Euclidean Spaces for Computer Vision & Graphics
GNOMON:计算机视觉非欧几里得空间中的深度生成模型
- 批准号:
EP/X011364/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: Exploiting Deep Generative Models for Visual Recognition
职业:利用深度生成模型进行视觉识别
- 批准号:
2239076 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Myc Transcription Factor Inhibitor Design: Integrating Atomic and Mesoscale with Semi-Supervised Generative Deep Learning Models
Myc 转录因子抑制剂设计:将原子和中尺度与半监督生成深度学习模型相结合
- 批准号:
10463080 - 财政年份:2022
- 资助金额:
-- - 项目类别:
SHF: Small: Energy and Computational Efficient Deep Generative AI Models via Emerging Devices, Circuits, and Architectures
SHF:小型:通过新兴设备、电路和架构实现能源和计算高效的深度生成人工智能模型
- 批准号:
2219753 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
PHOENIX: Generative models and Deep Reinforcement Learning for Geospatial Computer Vision
PHOENIX:地理空间计算机视觉的生成模型和深度强化学习
- 批准号:
571887-2021 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alliance Grants
Myc Transcription Factor Inhibitor Design: Integrating Atomic and Mesoscale with Semi-Supervised Generative Deep Learning Models
Myc 转录因子抑制剂设计:将原子和中尺度与半监督生成深度学习模型相结合
- 批准号:
10745272 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Deep Generative Models for Treatment Effect Inference in Healthcare
用于医疗保健治疗效果推断的深度生成模型
- 批准号:
2721961 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship