Exploiting novel materials to overcome physiological barriers for oral inhalation of biologics

利用新材料克服口服吸入生物制剂的生理障碍

基本信息

  • 批准号:
    2742218
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Biological drugs such as peptides, proteins and antibodies are powerful macromolecules that have been established as important classes of therapeutics for the treatment of various diseases. With their high specificity and potency, it is anticipated that biologics will dominate most pipelines. Due to their high susceptibility to degradation and large molecular size that limits transport across the epithelium, administration of biologics is largely limited to parenteral routes which are invasive and require proper training. Non-invasive approach of delivering biologics is highly sought-after. Oral inhalation holds great promise for delivering biologics because of the large surface area and highly vascularisation of the lungs that enable rapid systemic absorption. This route can also increase drug concentration in the airways, making it suitable for the treatment of lung diseases for local action such as severe asthma, respiratory infections, and lung cancers, which are enormous global health burden. Inhalation is non-invasive with the possibility of self-administration. By formulating biologics in dry powder form the stability of biological formulation is also enhanced. This prolongs product shelf-life, avoids cold-chain, reduces drug wastage and environmental impact. The major challenges of pulmonary delivery of biologics are producing aerosols with excellent aerodynamic properties that allow effective deposition of particles in the airways, overcoming the mucus, surfactant, and immunological barriers along the respiratory tract, while protecting the fragile biomolecules from various kinds of stress and degradation during production and delivery. For delivery into the bloodstream, absorption enhancers are also required to increase the permeability of the epithelial barrier controllably and reversibly. The goal of this project is to develop strategies to overcome these physiological barriers, by utilising novel materials developed by Croda (synthetic/naturally derived lipids, polymers, surfactants, and their combinations) that can stabilise biologics from degradation, promote drug absorption and enhance aerosol performance. Machine learning (ML) and pharmacokinetic (PK) models will be applied to assist formulation development. The objectives of the project are: (1) establish models of mucosal barrier that simulate the human airway permeability profile; (2) investigate the absorption enhancing and protein stabilising effects of a series of novel materials; (3) utilise generative ML models to identify novel materials to improve permeability and stability of biologics; (4) engineering of inhaled biologics formulations using appropriate combination of excipients and particle engineering techniques with scalability; (5) predict the PK profile of the formulations using physiologically based pharmacokinetic (PBPK) model.This project aligns with EPSRC remits to accelerate translation to healthcare applications through predictive pharmaceutical sciences and pharmaceutical process engineering. It employs particle engineering techniques with scalability such as spray drying to prepare powder aerosol of biologics for inhalation; utilises novel material combinations to enhance stability and delivery efficiency of biologics; applies computational tools and modelling to assist formulation development. The ultimate goal is to establish inhaled delivery platform of biologics to produce safe and targeted treatments of diseases with unmet medical needs.
生物药物如肽、蛋白质和抗体是强大的大分子,其已被确立为用于治疗各种疾病的重要类别的治疗剂。由于其高特异性和效力,预计生物制剂将主导大多数管道。由于其对降解的高度敏感性和限制跨上皮转运的大分子尺寸,生物制剂的施用在很大程度上限于具有侵入性且需要适当训练的肠胃外途径。递送生物制剂的非侵入性方法非常受欢迎。口服吸入给药生物制剂带来了很大的希望,因为大的表面积和高度血管化的肺部,使快速全身吸收。该途径还可以增加气道中的药物浓度,使其适用于治疗肺部疾病,以局部行动,如严重哮喘,呼吸道感染和肺癌,这些疾病是巨大的全球健康负担。吸入是非侵入性的,可以自行给药。通过配制干粉形式的生物制剂,生物制剂的稳定性也得到增强。这延长了产品的保质期,避免了冷链,减少了药物浪费和对环境的影响。生物制剂肺部递送的主要挑战是生产具有优异空气动力学特性的气雾剂,其允许颗粒在气道中有效沉积,克服沿着呼吸道的粘液、表面活性剂和免疫屏障,同时保护脆弱的生物分子在生产和递送期间免受各种压力和降解。为了递送到血流中,还需要吸收促进剂来可控地和可逆地增加上皮屏障的渗透性。该项目的目标是开发克服这些生理障碍的策略,方法是利用Croda开发的新型材料(合成/天然衍生的脂质、聚合物、表面活性剂及其组合),这些材料可以稳定生物制品,防止其降解,促进药物吸收并增强气雾剂性能。将应用机器学习(ML)和药代动力学(PK)模型来辅助制剂开发。该项目的目标是:(1)建立模拟人体气道渗透性的粘膜屏障模型;(2)研究一系列新材料的吸收促进和蛋白质稳定作用;(3)利用生成ML模型识别新材料,以改善生物制剂的渗透性和稳定性;(4)研究生物制剂的生物相容性和生物相容性。(4)使用赋形剂和具有可扩展性的颗粒工程技术的适当组合来工程化吸入生物制剂;(5)使用基于生理学的药代动力学(PBPK)预测制剂的PK特征该项目与EPSRC的使命一致,通过预测制药科学加速向医疗保健应用的转化,制药工艺工程它采用具有可扩展性的颗粒工程技术,如喷雾干燥,以制备用于吸入的生物制剂的粉末气雾剂;利用新型材料组合来提高生物制剂的稳定性和递送效率;应用计算工具和建模来辅助制剂开发。最终目标是建立生物制剂的吸入给药平台,为未满足医疗需求的疾病提供安全和有针对性的治疗。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

Novel-miR-1134调控LHCGR的表达介导拟 穴青蟹卵巢发育的机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
novel-miR75靶向OPR2,CA2和STK基因调控人参真菌胁迫响应的分子机制研究
  • 批准号:
    82304677
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
  • 批准号:
    82304658
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
  • 批准号:
    82070530
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA-novel-272通过靶向半乳糖凝集素3调控牙鲆肠道上皮细胞炎症反应的机制研究
  • 批准号:
    32002421
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
m6A修饰介导的lncRNA WEE2-AS1转录后novel-pri-miRNA剪切机制在胶质瘤恶性进展中的作用研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
miRNA/novel_167靶向抑制Dmrt1的表达在红鳍东方鲀性别分化过程中的功能研究
  • 批准号:
    31902347
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Enviro: a novel colouring solution to unlock sustainable lightweight advanced composite materials
Enviro:一种新颖的着色解决方案,可释放可持续的轻质先进复合材料
  • 批准号:
    10093708
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
EAGER: IMPRESS-U: Quantum dynamics in novel chalcogenide materials and devices
EAGER:IMPRESS-U:新型硫族化物材料和器件中的量子动力学
  • 批准号:
    2403609
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: A Novel Electrically-assisted Multimaterial Printing Approach for Scalable Additive Manufacturing of Bioinspired Heterogeneous Materials Architectures
职业:一种新型电辅助多材料打印方法,用于仿生异质材料架构的可扩展增材制造
  • 批准号:
    2338752
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CoCoGel: Controlling Colloidal Gels for Novel Sustainable Materials
CoCoGel:控制新型可持续材料的胶体凝胶
  • 批准号:
    EP/Y03595X/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Circularizing Squarate-Based Materials: Novel Dynamic Networks
圆形方形材料:新型动态网络
  • 批准号:
    2404144
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Development of Novel High-Performance Carbon Sink Concrete Materials Using Sustainable Multifunctional Hybrid Additives
职业:使用可持续多功能混合添加剂开发新型高性能碳汇混凝土材料
  • 批准号:
    2335878
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
  • 批准号:
    2324033
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
fabrication of supersaturated solid solution thermoelectric materials utilizing novel spherical composite powder preparation technology and laser powder bed fusion
利用新型球形复合粉末制备技术和激光粉末床熔融制备过饱和固溶体热电材料
  • 批准号:
    23K13572
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Elucidation of Mechanism of Phonon Thermal Conductivity Reduction by Orbital Fluctuation for Development of Novel Thermal Functional Materials
阐明轨道涨落降低声子导热率的机制,以开发新型热功能材料
  • 批准号:
    23KJ0893
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
A Dual-Laser Additive Manufacturing System for Novel Materials (Green3D)
用于新型材料的双激光增材制造系统 (Green3D)
  • 批准号:
    EP/X041190/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了