Development of a robotic directed evolution approach to whole cell biosensor production
开发用于全细胞生物传感器生产的机器人定向进化方法
基本信息
- 批准号:2742540
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Whole cell biosensors are single-celled organisms that have been re-engineered to detect and respond to elements of their environment. Whole cell biosensors can be used to measure the presence of various molecules by responding in a detectable way, for instance by production of fluorescence or a colored pigment. The ability to accurately measure molecular targets is required broadly in fields including medical diagnostics and environmental monitoring. When compared to existing detection methods, whole cell biosensors are advantageous in that they are low-cost, self-replicating and bio-degradable. These properties would make whole cell biosensors suitable for field-testing and point-of-care diagnostics, including in resource limited locations.The aim of this research is to create a microfluidics-based platform, coupled to engineered biological biosensor scaffolds, that can be applied for engineering and producing whole cell biosensors that are adaptable to different targets. This will be achieved via three interdisciplinary and complementary research objectives. Our first objective will apply synthetic biological engineering in bacteria to create a modularly designed biosensor in which the sensing element can be 'chopped and changed' for new targets without re-engineering the entire system. This will leverage past engineering of modular biosensors, which demonstrate it is possible to re-purpose nanobodies as sensing elements in a modular fashion. Our work will similarly leverage physical and computational pipelines for designing and modifying the targets of nanobodies, which are well-established, making nanobodies a particularly promising starting point for creating for re-targetable sensing domains.Our second objective will take designed nanobody biosensors and apply state-of-the-art directed evolution technology to optimise their functionality as biosensors, as well as to re-direct them to alternative targets when desired. Our approach will combine a robotic microscope and microfluidics, which make it possible to observe whole cell biosensors for extended periods of time at the level of individual cells, including their response to time varying stimuli. Via such an approach it is also possible to deliver light signals to individual cells to select the best performing examples out of large libraries of engineered variants. The process of iteratively delivering 'survive' or 'die' signals to cells will be used to drive large libraries toward desired performance: in this case sensitive and specific detection of important biological targets.Finally, the third objective will be to apply the modular nanobody designs and microscope based engineering platform to build novel whole cell biosensors, with a particular focus on developing highly specific and reliable biosensors as a low-cost and accessible diagnostics platform.This project falls within the EPSRC 'Healthcare Technologies' and 'Engineering' research areas.Within Healthcare it directly addresses challenges surrounding optimisation of disease prediction, diagnosis and intervention is one of the four grand challenges. Within Engineering the project's interdisciplinary focus lies at the intersection of the EPSRC Research Areas "Synthetic Biology" and "Robotics"
全细胞生物传感器是经过重新设计的单细胞生物体,可以检测和响应环境中的元素。全细胞生物传感器可以通过以可检测的方式进行响应来测量各种分子的存在,例如通过产生荧光或有色色素。精确测量分子靶标的能力在医疗诊断和环境监测等领域中被广泛要求。与现有的检测方法相比,全细胞生物传感器具有成本低、可自我复制和可生物降解等优点。这些特性将使全细胞生物传感器适合于现场测试和护理点诊断,包括在资源有限的地方。本研究的目的是创建一种基于微流体的平台,与工程生物传感器支架相结合,可以应用于工程和生产适应不同目标的全细胞生物传感器。这将通过三个跨学科和互补的研究目标来实现。我们的第一个目标是将合成生物工程应用于细菌,以创造一种模块化设计的生物传感器,在这种传感器中,传感元件可以针对新的目标进行“切割和改变”,而不需要重新设计整个系统。这将利用过去模块化生物传感器的工程,这表明以模块化方式重新利用纳米物体作为传感元件是可能的。我们的工作将同样利用物理和计算管道来设计和修改纳米实体的目标,这些目标已经建立得很好,使纳米实体成为创建可重新定位的感应域的一个特别有希望的起点。我们的第二个目标将采用设计的纳米实体生物传感器,并应用最先进的定向进化技术来优化它们作为生物传感器的功能,以及在需要时将它们重新定向到替代目标。我们的方法将结合机器人显微镜和微流控技术,这使得有可能在单个细胞水平上观察整个细胞生物传感器的更长时间段,包括它们对时变刺激的反应。通过这种方法,还可以向单个细胞传递光信号,以便从大型工程变种库中选择表现最好的例子。反复向细胞传递“存活”或“死亡”信号的过程将被用来驱动大型文库实现预期的性能:在这种情况下,对重要的生物目标进行敏感和特定的检测。最后,第三个目标将是应用模块化纳米体设计和基于显微镜的工程平台来构建新型的全细胞生物传感器,特别关注开发高度特异和可靠的生物传感器作为低成本和可访问的诊断平台。该项目属于EPSRC的医疗保健技术和工程研究领域。该项目直接解决围绕疾病预测、诊断和干预的优化的挑战是四大挑战之一。在工程学领域,该项目的跨学科重点位于EPSRC研究领域“合成生物学”和“机器人学”的交汇点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
- 批准号:52111530069
- 批准年份:2021
- 资助金额:10 万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
Phase 2 - Effective and Integrated Chemical Free Robotic Milking
第 2 阶段 - 有效且集成的无化学品机器人挤奶
- 批准号:
10093094 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
CAREER: Designing Autonomous Battery-Free Robotic Sensors
职业:设计自主无电池机器人传感器
- 批准号:
2338736 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Revolutionary Rotors: A Robotic Flywheel Assembly Line
革命性转子:机器人飞轮装配线
- 批准号:
10098069 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
Dynamically Adaptive Prosthetic Limbs Enabled by Autonomous Soft Robotic Interfaces
由自主软机器人接口实现的动态自适应假肢
- 批准号:
10095028 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D
RII Track-4: NSF: Enabling Synergistic Multi-Robot Cooperation for Mobile Manipulation Beyond Individual Robotic Capabilities
RII Track-4:NSF:实现协同多机器人合作,实现超越单个机器人能力的移动操作
- 批准号:
2327313 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
RII Track-4:NSF:Planetary Robotic Construction on the Moon and Mars Using 3D Printed Waterless Concrete
RII Track-4:NSF:使用 3D 打印无水混凝土在月球和火星上进行行星机器人施工
- 批准号:
2327469 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
MRI-guided Robotic-assisted Neurosurgery at 0.55T
0.55T MRI 引导机器人辅助神经外科手术
- 批准号:
2904728 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Studentship
NRI/Collaborative Research: Robotic Disassembly of High-Precision Electronic Devices
NRI/合作研究:高精度电子设备的机器人拆卸
- 批准号:
2422640 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Interaction-aware Planning and Control for Robotic Navigation in the Crowd
协作研究:人群中机器人导航的交互感知规划和控制
- 批准号:
2423131 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Researching the feasibility of enhancing the productivity of daffodil harvesting through the use of a daffodil collection robotic platform (Daffy)
研究利用水仙花采集机器人平台(Daffy)提高水仙花采收生产力的可行性
- 批准号:
10107691 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Launchpad