Understanding how wetland species became rare or locally extinct using sedimentary DNA and stable isotopes - supporting future ecological restoration

利用沉积 DNA 和稳定同位素了解湿地物种如何变得稀有或局部灭绝 - 支持未来的生态恢复

基本信息

  • 批准号:
    2744224
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Wetlands represent one of the most critical ecosystems globally for economic, social and ecological purposes, yet they are threatened due to anthropogenic activities causing wetland loss and degradation (Hu et al., 2017). Regarding climate change, wetlands affect global and local climates by absorbing carbon dioxide and emitting methane (Hu et al., 2017; Russi, 2013). Furthermore, freshwater wetlands cover 1% of the earth's surface yet provide habitats for >40% of the world's species, making it a large contributor to biodiversity (Mitra, S., Wassmann, R. and Vlek, P.L.G. (eds.), 2003). Wetlands also contribute to the hydrological cycle by replenishing groundwater, regulating water movement and purifying water (Millennium Ecosystem Assessment, 2005). For human health, wetlands provide traditional medicines of which 80% of the world's population rely on for primary health care, making them an absolute necessity for humans regarding their resources (Hu et al., 2017; Mitra, S., Wassmann, R. and Vlek, P.L.G. (eds.), 2003). Environmental DNA and stable isotopes can explain species' feeding and diet habits, providing critical information about the types of prey consumed and their relative importance (Oliveira, 2018). Furthermore, it can aid in the interpretation of population dynamics and allow appropriate conservation actions when trophic resources are the limiting factor in their distribution and habitat use, survival and reproductive success (Martin, 1987; Molina and Erwin, 2006; Newton, 1998; Toral et al., 2012). Understanding past trophic levels within wetlands can aid in future management and restoration projects as it would provide insights into which species are native and their preferred environments. Furthermore, looking at the climate and trophic levels at certain historical stages could explain extinctions. In turn, this will ensure species are not introduced into areas where they could not survive due to inappropriate climatic conditions, competition, or anthropogenic pressures. Over a third of the world's wetlands have disappeared since the 1970s, with 83% of freshwater species declining (Wildfowl and Wetlands Trust, 2022b). In 2018 the UK Government created a 25-year Environment Plan and specified restoring wetlands on a never-before-seen scale to reduce flood risk and provide valuable ecological habitats. Reintroduction guidelines require an understanding of which wetland species are genuinely native and why they disappeared. This project would aid those guidelines and provide a database of native species and possible reasons for their demise, allowing native wetlands to be created. Furthermore, it would create a method that can be applied to the worldwide restoration of wetlands and can potentially estimate rates and causes of the decline of previous species, preserving current wildlife.This project aims to understand how modern technologies can reconstruct past ecosystems and solve ecological questions about wetlands. Furthermore, it endeavours to answer gaps in research with regards to using environmental DNA (eDNA) and stable isotopes to create models that can estimate rates and causes of decline in wetlands. Reaching these aims will provide enough information for organisations such as the Wildfowl and Wetlands Trust (WWT) to comply with the UK Government's guidelines to create wetlands.
湿地是全球经济、社会和生态目的最重要的生态系统之一,但由于人类活动造成湿地丧失和退化,湿地受到威胁(Hu等人,2017年)。关于气候变化,湿地通过吸收二氧化碳和排放甲烷影响全球和当地气候(Hu等人,2017; Russi,2013)。此外,淡水湿地覆盖地球表面的1%,但为世界上>40%的物种提供栖息地,使其成为生物多样性的重要贡献者(Mitra,S.,瓦斯曼河和Vlek,P.L.G.(编辑),2003年)。湿地还通过补充地下水、调节水的流动和净化水来促进水文循环(千年生态系统评估,2005年)。为了人类健康,湿地提供了传统药物,其中80%的世界人口依赖于初级卫生保健,使其成为人类对其资源的绝对必需品(Hu等人,2017年; Mitra,S.,瓦斯曼河和Vlek,P.L.G.(编辑),2003年)。环境DNA和稳定同位素可以解释物种的摄食和饮食习惯,提供有关所消耗的猎物类型及其相对重要性的关键信息(Oliveira,2018)。此外,它可以帮助解释种群动态,并在营养资源是其分布和栖息地利用、生存和繁殖成功的限制因素时允许适当的保护行动(Martin,1987; Molina和Erwin,2006; Newton,1998; Toral等人,2012年)。了解湿地过去的营养水平可以帮助未来的管理和恢复项目,因为它将提供洞察哪些物种是本地的和他们的首选环境。此外,在某些历史阶段观察气候和营养水平可以解释这种现象。反过来,这将确保物种不会被引入到由于不适当的气候条件,竞争或人为压力而无法生存的地区。自20世纪70年代以来,世界上超过三分之一的湿地已经消失,83%的淡水物种正在减少(Wildfowl and Wetlands Trust,2022 b)。2018年,英国政府制定了一项为期25年的环境计划,并规定以前所未有的规模恢复湿地,以减少洪水风险并提供宝贵的生态栖息地。重新引入指南要求了解哪些湿地物种是真正的本地物种,以及它们为什么消失。该项目将有助于这些准则,并提供一个本地物种及其消亡可能原因的数据库,从而创造出本地湿地。此外,它将创建一种方法,可以应用于世界范围内的湿地恢复,并可能估计以前物种的下降速度和原因,保护现有的野生动物。该项目旨在了解现代技术如何重建过去的生态系统,解决湿地的生态问题。此外,它还致力于填补在使用环境DNA(eDNA)和稳定同位素建立模型,以估计湿地减少的速度和原因方面的研究空白。实现这些目标将为野禽和湿地信托基金(WWT)等组织提供足够的信息,以遵守英国政府的湿地建设指导方针。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Understanding how pollutant aerosol particulates impact airway inflammation
了解污染物气溶胶颗粒如何影响气道炎症
  • 批准号:
    2881629
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
  • 批准号:
    MR/Y011503/1
  • 财政年份:
    2025
  • 资助金额:
    --
  • 项目类别:
    Fellowship
How can we make use of one or more computationally powerful virtual robots, to create a hive mind network to better coordinate multi-robot teams?
我们如何利用一个或多个计算能力强大的虚拟机器人来创建蜂巢思维网络,以更好地协调多机器人团队?
  • 批准号:
    2594635
  • 财政年份:
    2025
  • 资助金额:
    --
  • 项目类别:
    Studentship
Doctoral Dissertation Research: How New Legal Doctrine Shapes Human-Environment Relations
博士论文研究:新法律学说如何塑造人类与环境的关系
  • 批准号:
    2315219
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: How do plants control sperm nuclear migration for successful fertilization?
合作研究:植物如何控制精子核迁移以成功受精?
  • 批准号:
    2334517
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321481
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321480
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了