Ecological Network Inference for Resilient Food Systems: A Mathematical Approach

弹性食品系统的生态网络推理:数学方法

基本信息

  • 批准号:
    2744232
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Resilient food systems are required to meet the ever-increasing global demand for food, whilst mitigating against the uncertainties wrought by climate change and preventing the further erosion of biodiversity. Essential to meeting these challenges is the appreciation that agriculture takes place as part of a wider ecosystem. Pesticides can have knock-on effects on a range of non-target species, and that it is the interactions between the different elements of the wider agricultural environment that are critical to understand how the whole system behaves.An important way of understanding these interactions is as a network of species connected with links that represent ecological interactions such as competition, predation, parasitism. These networks can range in size, but might consist of hundreds or thousands of species, all interacting and contributing to the overall state and functioning of the ecosystem.The aim of this project is to create new network-based ways of studying agro-ecosystems and their response to climate change and other severe disruptions of the Anthropocene. In particular we seek to answer the following key research questions:* How can we construct agro-ecological networks over the relevant temporal and spatial scales?* How can we use these complex networks to inform models of the response of agro-ecosystems to disruption and disturbance?A fundamental question in ecology is how to construct species-interaction networks from observations. Whilst construction can be achieved through directly observing interactions in the field, this method is time-consuming, localised and does not scale to a more global system. Current approaches to network inference take as their input the co-occurence of species in binary "presence-absence" data across space and time (Volkov et al. 2009). Such approaches are inadequate for several reasons: they are unable to distinguish different interaction types; they can conflate interactions with environmental covariance, and do not properly account for indirect interactions.This project will develop new network-inference techniques based on the statistical-mechanical principle of Maximum Entropy (MaxEnt). MaxEnt has been proposed in the context before (Volkov et al. 2009, Emary et al. 2021), but my goal is to extend this technique to use time-delayed correlations to correctly reconstruct interaction type and not just the magnitude. This is clearly essential for a proper understanding of ecosystem functioning. After a period of method development I will, through computer simulations, explore the quality of inference in complex ecosystems with limited information gathering. Next I shall demonstrate the applicability of the method to real-world biomonitoring data, using the H2020 EcoStack project, of which NCL is a partner. I will thus construct ecosystem services networks relevant to UK food systems.Understanding and mitigating how agro-ecosystems respond to the rapid and potentially drastic changes wrought by climate change and species loss is a research priority. I contend that the only way to do this is through a network approach that considers the cascading effects of a disturbance throughout different ecosystem components.
为了满足日益增长的全球粮食需求,同时减轻气候变化造成的不确定性,防止生物多样性进一步受到侵蚀,需要有具有复原力的粮食系统。应对这些挑战的关键是认识到农业是更广泛的生态系统的一部分。农药可以对一系列非目标物种产生连锁反应,而更广泛的农业环境中不同要素之间的相互作用对于理解整个系统的行为至关重要,理解这些相互作用的一个重要方法是将物种网络与代表生态相互作用的链接联系起来,如竞争,捕食,寄生。这些网络的规模不等,但可能由数百或数千个物种组成,所有物种都相互作用,并对生态系统的整体状态和功能做出贡献。该项目的目的是创造新的基于网络的方法来研究农业生态系统及其对气候变化和人类世其他严重破坏的反应。特别是,我们试图回答以下关键的研究问题:* 我们如何构建农业生态网络在相关的时间和空间尺度?*我们如何利用这些复杂的网络来为农业生态系统对破坏和干扰的反应模型提供信息?生态学中的一个基本问题是如何从观察中构建物种相互作用网络。虽然可以通过直接观察现场的相互作用来实现构建,但这种方法耗时,局部化,并且不能扩展到更全球化的系统。目前的网络推理方法将跨空间和时间的二元“存在-不存在”数据中的物种共存作为其输入(Volkov等人,2009)。这种方法是不够的,原因有几个:它们无法区分不同的相互作用类型;它们可以混淆的相互作用与环境的协方差,并没有适当的帐户间接interactions.This项目将开发新的网络推理技术的基础上最大熵(MaxEnt)的物理力学原理。MaxEnt已经在之前的上下文中提出(Volkov et al. 2009,Emary et al. 2021),但我的目标是扩展这种技术,使用时间延迟相关性来正确重建相互作用类型,而不仅仅是幅度。这对于正确理解生态系统的功能显然至关重要。经过一段时间的方法开发,我将通过计算机模拟,探索在信息收集有限的复杂生态系统中的推理质量。接下来,我将使用H2020 EcoStack项目(NCL是该项目的合作伙伴)证明该方法对真实世界生物监测数据的适用性。因此,我将构建生态系统服务网络相关的英国foodsystem.Understanding和减轻农业生态系统如何应对气候变化和物种损失造成的快速和潜在的剧烈变化是一个研究重点。我认为,做到这一点的唯一方法是通过网络的方法,考虑在不同的生态系统组成部分的干扰级联效应。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Internet-administered, low-intensity cognitive behavioral therapy for parents of children treated for cancer: A feasibility trial (ENGAGE).
针对癌症儿童父母的互联网管理、低强度认知行为疗法:可行性试验 (ENGAGE)。
  • DOI:
    10.1002/cam4.5377
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    4
  • 作者:
  • 通讯作者:
Differences in child and adolescent exposure to unhealthy food and beverage advertising on television in a self-regulatory environment.
在自我监管的环境中,儿童和青少年在电视上接触不健康食品和饮料广告的情况存在差异。
  • DOI:
    10.1186/s12889-023-15027-w
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
  • 通讯作者:
The association between rheumatoid arthritis and reduced estimated cardiorespiratory fitness is mediated by physical symptoms and negative emotions: a cross-sectional study.
类风湿性关节炎与估计心肺健康降低之间的关联是由身体症状和负面情绪介导的:一项横断面研究。
  • DOI:
    10.1007/s10067-023-06584-x
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
  • 通讯作者:
ElasticBLAST: accelerating sequence search via cloud computing.
ElasticBLAST:通过云计算加速序列搜索。
  • DOI:
    10.1186/s12859-023-05245-9
  • 发表时间:
    2023-03-26
  • 期刊:
  • 影响因子:
    3
  • 作者:
  • 通讯作者:
Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly.
使用通过嵌段共聚物自组装制造的 2D 金纳米结构阵列放大 EQCM-D 检测细胞外囊泡。
  • DOI:
    10.1039/d2nh00424k
  • 发表时间:
    2023-03-27
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

多维在线跨语言Calling Network建模及其在可信国家电子税务软件中的实证应用
  • 批准号:
    91418205
  • 批准年份:
    2014
  • 资助金额:
    170.0 万元
  • 项目类别:
    重大研究计划
基于Wireless Mesh Network的分布式操作系统研究
  • 批准号:
    60673142
  • 批准年份:
    2006
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SBIR Phase I: A Mixed-Computation Neural Network Acceleration Stack for Edge Inference
SBIR 第一阶段:用于边缘推理的混合计算神经网络加速堆栈
  • 批准号:
    2304304
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Graph Neural Network Inference on Multi-FPGA Clusters
多 FPGA 集群上的图神经网络推理
  • 批准号:
    2894270
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Statistical Modeling and Inference for Network Data in Modern Applications
现代应用中网络数据的统计建模和推理
  • 批准号:
    2326893
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2243053
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2243052
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Inference and computational methods for regression models in the presence of partially observed network data or high-dimensional capture-recapture data
存在部分观察到的网络数据或高维捕获-重捕获数据的回归模型的推理和计算方法
  • 批准号:
    RGPIN-2022-03309
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic Invariants for Phylogenetic Network Inference
系统发育网络推理的代数不变量
  • 批准号:
    EP/W007134/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Classification-based inference for contact network-based disease transmission systems
基于接触网络的疾病传播系统的基于分类的推理
  • 批准号:
    573859-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
The many paths to ecological network inference: reconciling machine learning, empirical data, and ecological knowledge
生态网络推理的多种途径:协调机器学习、经验数据和生态知识
  • 批准号:
    RGPAS-2021-00015
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了