Data-driven Infrastructure Planning for Offshore Wind Farms
数据驱动的海上风电场基础设施规划
基本信息
- 批准号:2744462
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The UK's share of offshore wind energy has been steadily increasing in recent years; there is now 10.4 GW of installed capacity offshore (reference: UK Wind Energy Database online: (https://www.renewableuk.com/page/UKWEDhome/Wind-Energy-Statistics.htm). There are already plans for developing large-scale offshore wind farms with capacities exceeding 1 GW. There remains however a degree of uncertainty over how to best develop, maintain and operate the wind farms and their underlying connection system to achieve cost competitiveness compared to conventional generation technologies. For example, larger turbines located farther offshore are more difficult to access. Further, accessibility of offshore assets depends on weather conditions, which can have a significant impact on income and expenditure. Consequently, the operator does not always possess sufficient information to make the most cost-effective decisions relating to planning and maintaining their assets. Similar problems arise from uncertainty over long-term decisions for investment and integration of offshore wind assets. Existing modelling methods make simplifying assumptions which unfortunately lead to suboptimal solutions, especially in larger wind farms where many factors are at play. For instance, existing tools typically use two state Markov chains for failure and repair, meaning that failure and repair times are exponentially distributed. Whilst this can be a reasonable approximation for failure, repair is rarely exponentially distributed due to sometimes large and random lead times to reach the assets depending on weather conditions. Durham has experience with more accurately representing failure and repair processes and handling modelling assumptions, especially under severe uncertainty in the planning stage. The aim of this project is to develop new methods for modelling and optimising decisions involving planning and operation for larger offshore wind farms, especially when facing uncertainties in the available actionable information. We also aim to link failure and repair to the environmental conditions of the wind farm, and operational conditions of individual turbines. We expect this to improve the predictive capability of failures and repairs, including the consideration of turbine accessibility, thereby reducing costs. The outcome of this project will inform decision-making processes for years to come for efficient integration and operation of larger offshore wind farms paving the way for future developments in a more robust and cost-effective manner.
近年来,英国海上风能的份额一直在稳步增加;目前海上装机容量为10.4吉瓦(参考:英国风能数据库在线:(https://www.renewableuk.com/page/UKWEDhome/Wind-Energy-Statistics.htm)。已经有计划开发容量超过1吉瓦的大型海上风电场。然而,与传统发电技术相比,如何最好地开发,维护和运营风电场及其基础连接系统以实现成本竞争力仍然存在一定程度的不确定性。例如,位于离岸较远的较大涡轮机更难以接近。此外,能否获得离岸资产取决于天气状况,这可能对收入和支出产生重大影响。因此,经营者并不总是掌握足够的信息,就规划和维护其资产作出最具成本效益的决定。类似的问题也来自于海上风电资产投资和整合的长期决策的不确定性。现有的建模方法使简化的假设,不幸的是,导致次优的解决方案,特别是在大型风电场,其中许多因素在发挥作用。例如,现有的工具通常使用两个状态的马尔可夫链的故障和修复,这意味着故障和修复时间是指数分布的。虽然这可能是故障的合理近似值,但由于有时根据天气条件到达资产的时间很长且随机,因此维修很少呈指数分布。达勒姆在更准确地表示故障和维修过程以及处理建模假设方面拥有丰富的经验,尤其是在规划阶段存在严重不确定性的情况下。该项目的目的是开发新的方法,用于建模和优化涉及大型海上风电场规划和运营的决策,特别是在面临可用可操作信息的不确定性时。我们还旨在将故障和维修与风电场的环境条件以及单个涡轮机的运行条件联系起来。我们期望这将提高故障和维修的预测能力,包括考虑涡轮机的可达性,从而降低成本。该项目的成果将为未来几年的决策过程提供信息,以便更有效地整合和运营大型海上风电场,为未来以更稳健和更具成本效益的方式进行开发铺平道路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
基于Cache的远程计时攻击研究
- 批准号:60772082
- 批准年份:2007
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
CC* Networking Infrastructure: YinzerNet: A Multi-Site Data and AI Driven Research Network
CC* 网络基础设施:YinzerNet:多站点数据和人工智能驱动的研究网络
- 批准号:
2346707 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Research Infrastructure: CCRI:New: Data-Driven Cybersecurity Research Infrastructure for Smart Manufacturing
合作研究:研究基础设施:CCRI:新:数据驱动的智能制造网络安全研究基础设施
- 批准号:
2234976 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Research Infrastructure: CCRI:New: Data-Driven Cybersecurity Research Infrastructure for Smart Manufacturing
合作研究:研究基础设施:CCRI:新:数据驱动的智能制造网络安全研究基础设施
- 批准号:
2234975 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Research Infrastructure: CCRI:New: Data-Driven Cybersecurity Research Infrastructure for Smart Manufacturing
合作研究:研究基础设施:CCRI:新:数据驱动的智能制造网络安全研究基础设施
- 批准号:
2234973 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
SAI: Data-Driven Governance for Broadband Infrastructure
SAI:宽带基础设施的数据驱动治理
- 批准号:
2324515 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Frameworks: Data-Driven Software Infrastructure for Next-Generation Molecular Simulations
框架:下一代分子模拟的数据驱动软件基础设施
- 批准号:
2311260 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Data-driven mathematical infrastructure for inclusive communities
包容性社区的数据驱动数学基础设施
- 批准号:
23H03502 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Research Infrastructure: CCRI:New: Data-Driven Cybersecurity Research Infrastructure for Smart Manufacturing
合作研究:研究基础设施:CCRI:新:数据驱动的智能制造网络安全研究基础设施
- 批准号:
2234974 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Research Infrastructure: CCRI:New: Data-Driven Cybersecurity Research Infrastructure for Smart Manufacturing
合作研究:研究基础设施:CCRI:新:数据驱动的智能制造网络安全研究基础设施
- 批准号:
2234972 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Construction and Evaluation of a High-Density Learning Analytics Infrastructure for Data-Driven Education
数据驱动教育高密度学习分析基础设施的构建和评估
- 批准号:
22H00551 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)