Improving Syndromic Surveillance by Data Integration

通过数据集成改进症状监测

基本信息

  • 批准号:
    7098641
  • 负责人:
  • 金额:
    $ 35.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-09-30 至 2008-09-29
  • 项目状态:
    已结题

项目摘要

The term "syndromic surveillance" is a generic term applied to a variety of newly developed methods in public health practice. For our purposes, syndromic surveillance refers to the automated collection and analysis in near-real-time of electronic health outcome data. Used in this way, syndromic surveillance sits within a broader category of "biosurveillance", the routine collection and analysis of electronic data falling outside of the classical surveillance paradigm. We propose a research program to improve the performance of aberration detection methods for syndromic surveillance using statistical methods of data integration. Our program focuses on three main areas of potential improvement: temporal modeling, spatio-temporal clustering, and integration of multiple data streams. We also include a research translation component, in order to ensure that the results of research will be of practical use to health departments and other practitioners of syndromic surveillance. Our three specific aims are: 1) To develop and improve temporal modeling for syndromic surveillance, using improved seasonal models and Hidden Markov Models (HMMs); 2) To investigate and evaluate data integration methods, including spatio-temporal clustering and multiple data source integration; 3) To develop PHIN-compliant software for use by local health departments and syndromic surveillance practitioners.
术语“综合征监测”是一个通用术语,适用于各种新开发的方法

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

AL OZONOFF其他文献

AL OZONOFF的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('AL OZONOFF', 18)}}的其他基金

Data Management & Analysis Core: IDEAL shapes vaccine response, susceptibility to respiratory infectious disease and asthma
数据管理
  • 批准号:
    10435037
  • 财政年份:
    2022
  • 资助金额:
    $ 35.17万
  • 项目类别:
Data Management & Analysis Core: IDEAL shapes vaccine response, susceptibility to respiratory infectious disease and asthma
数据管理
  • 批准号:
    10589803
  • 财政年份:
    2022
  • 资助金额:
    $ 35.17万
  • 项目类别:
Data Management Core: Systems Biology to Identify Biomarkers of Neonatal Vaccine Immunogenicity
数据管理核心:识别新生儿疫苗免疫原性生物标志物的系统生物学
  • 批准号:
    10344008
  • 财政年份:
    2021
  • 资助金额:
    $ 35.17万
  • 项目类别:
Data Management Core: Systems Biology to Identify Biomarkers of Neonatal Vaccine Immunogenicity
数据管理核心:识别新生儿疫苗免疫原性生物标志物的系统生物学
  • 批准号:
    10312046
  • 财政年份:
    2021
  • 资助金额:
    $ 35.17万
  • 项目类别:
Data Management Core: Systems Biology to Identify Biomarkers of Neonatal Vaccine Immunogenicity
数据管理核心:识别新生儿疫苗免疫原性生物标志物的系统生物学
  • 批准号:
    10063820
  • 财政年份:
    2016
  • 资助金额:
    $ 35.17万
  • 项目类别:
Improving Syndromic Surveillance by Data Integration
通过数据集成改进症状监测
  • 批准号:
    7351841
  • 财政年份:
    2006
  • 资助金额:
    $ 35.17万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了