Data Management & Analysis Core: IDEAL shapes vaccine response, susceptibility to respiratory infectious disease and asthma
数据管理
基本信息
- 批准号:10589803
- 负责人:
- 金额:$ 21.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-10 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:ArchitectureArchivesArticulationAsthmaBioinformaticsBiological AssayBiological MarkersBiometryChild HealthChildhoodClinicalClinical DataCollaborationsCommunicable DiseasesCommunitiesComputer softwareDataData AnalysesData AnalyticsData FilesData SetData SourcesData Storage and RetrievalDepositionDevelopmentDiseaseDisparateEnvironmentExperimental DesignsFAIR principlesGene ExpressionGoalsHealthHuman ResourcesImmuneImmune systemIn VitroInfrastructureInstitutionInterventionKnowledgeLifeLinkMetadataMethodsNational Institute of Allergy and Infectious DiseaseOutcomePathway interactionsPersonnel StaffingPredispositionProcessProductivityProteomicsQuality ControlReproducibilityReproductionResearchResearch Project GrantsResourcesRespiratory Tract InfectionsSamplingSecureSecurityServicesShapesSourceStatistical Data InterpretationSystems AnalysisSystems BiologyUnited States National Institutes of HealthVaccinesWorkarchive databiosignatureclinically relevantcloud basedcloud storagecohortcomputerized toolscomputing resourcesdata accessdata acquisitiondata archivedata infrastructuredata integrationdata managementdata sharingdata standardsdemographicsdesigndigitalepigenomicsexperimental analysisheterogenous datahigh dimensionalityimprovedinnovationinsightmetabolomicsmicrobiomeoperationpredict clinical outcomeprognosticpublic repositoryquality assurancerelational databaserepositoryrespiratoryresponsesample collectionsynergismtranscriptome sequencingtranscriptomicsuser-friendlyvaccine response
项目摘要
PROJECT SUMMARY: IDEAL Data Management Core (DMC)
The overarching goal of the proposed immune development in early life (IDEAL) project is to employ systems
biology to characterize childhood immune trajectories in order to define endotypes of key clinical outcomes such
as vaccine responsiveness, respiratory infection and asthma. In support of this effort, the Data Management
Core (DMC) will establish and maintain a cloud-based discovery environment, consisting of data storage and
computational tools to perform integrative systems analyses of clinical data, lab sample management, and high
dimensional assay results. The DMC will facilitate collaborations between the IDEAL Projects and Cores
including data sharing, submission to public repositories, and engagement with the external research community.
The broad goals of the DMC are reliable data capture and retention, ongoing quality assurance (QA), and
access/computational resources for integrative analyses. We articulate these goals through three Specific Aims,
including establishment of digital infrastructure for data capture, management, and analysis; rigorous quality
control (QC) and QA; and biostatistical and bioinformatics expertise for analysis.
Our data management architecture is designed on the basis of improved institutional capabilities for reliable
cloud-based clinical data management, experimental assay QC/QA, and analytic support. We have worked
closely with the BCH Research Computing Department to implement a system for IDEAL collaborators that will
combine security and reliability with accessibility and state-of-the-art computational tools and resources. Our
approach offers many advantages over more traditional server-based architecture, not the least of which is a
fruitful collaborative computing environment for integrative analyses and scientific discovery.
Any scientific endeavor of this scope and scale requires robust data management plans, infrastructure, and
operations. Indeed, there can be no practical integration of data without an environment to link these data across
platforms. The DMC’s integrative function is necessary to leverage the distinct strengths of the IDEAL projects
and cores into scientific synergies. We expect our integrated discovery environment will augment the scientific
value and productivity of the overall IDEAL study. The DMC will enable us to discover endotype-specific
molecules and pathways, that may serve as prognostic and/or actionable biomarkers to predict clinical outcomes
and/or that represent targets for interventions that redirect IDEAL towards health.
项目概述:IDEAL Data Management Core (DMC)
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AL OZONOFF其他文献
AL OZONOFF的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AL OZONOFF', 18)}}的其他基金
Data Management & Analysis Core: IDEAL shapes vaccine response, susceptibility to respiratory infectious disease and asthma
数据管理
- 批准号:
10435037 - 财政年份:2022
- 资助金额:
$ 21.78万 - 项目类别:
Data Management Core: Systems Biology to Identify Biomarkers of Neonatal Vaccine Immunogenicity
数据管理核心:识别新生儿疫苗免疫原性生物标志物的系统生物学
- 批准号:
10344008 - 财政年份:2021
- 资助金额:
$ 21.78万 - 项目类别:
Data Management Core: Systems Biology to Identify Biomarkers of Neonatal Vaccine Immunogenicity
数据管理核心:识别新生儿疫苗免疫原性生物标志物的系统生物学
- 批准号:
10312046 - 财政年份:2021
- 资助金额:
$ 21.78万 - 项目类别:
Data Management Core: Systems Biology to Identify Biomarkers of Neonatal Vaccine Immunogenicity
数据管理核心:识别新生儿疫苗免疫原性生物标志物的系统生物学
- 批准号:
10063820 - 财政年份:2016
- 资助金额:
$ 21.78万 - 项目类别:
Improving Syndromic Surveillance by Data Integration
通过数据集成改进症状监测
- 批准号:
7098641 - 财政年份:2006
- 资助金额:
$ 21.78万 - 项目类别:
Improving Syndromic Surveillance by Data Integration
通过数据集成改进症状监测
- 批准号:
7351841 - 财政年份:2006
- 资助金额:
$ 21.78万 - 项目类别:
相似海外基金
Sediment Drilling Facility for environmental and genetic archives
环境和遗传档案沉积物钻探设施
- 批准号:
LE240100064 - 财政年份:2024
- 资助金额:
$ 21.78万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Aerial Archives of Race and American-Occupied Japan
种族和美国占领的日本的航空档案
- 批准号:
24K03721 - 财政年份:2024
- 资助金额:
$ 21.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Understanding biosphere-geosphere coevolution through carbonate-associated phosphate, community archives, and open-access education in rural schools
职业:通过碳酸盐相关磷酸盐、社区档案和农村学校的开放教育了解生物圈-地圈协同进化
- 批准号:
2338055 - 财政年份:2024
- 资助金额:
$ 21.78万 - 项目类别:
Continuing Grant
Designing a Bridging Model Using Learning Content Information LOD to Link School Education and Digital Archives
使用学习内容信息 LOD 设计桥接模型来链接学校教育和数字档案
- 批准号:
23H03695 - 财政年份:2023
- 资助金额:
$ 21.78万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Doris Lessing's Archives: Communism, Decolonisation and Literary Practice
多丽丝·莱辛档案:共产主义、非殖民化和文学实践
- 批准号:
2888789 - 财政年份:2023
- 资助金额:
$ 21.78万 - 项目类别:
Studentship
Building a sustainable future for anthropology's archives: Researching primary source data lifecycles, infrastructures, and reuse
为人类学档案构建可持续的未来:研究主要源数据生命周期、基础设施和重用
- 批准号:
2314762 - 财政年份:2023
- 资助金额:
$ 21.78万 - 项目类别:
Standard Grant
Reading Writing Lives: Publishing & Preserving Australian Literary Archives
阅读写作生活:出版
- 批准号:
DP230101797 - 财政年份:2023
- 资助金额:
$ 21.78万 - 项目类别:
Discovery Projects
Integrated High-Definition Visualization of Digital Archives for Borobudur Temple
婆罗浮屠寺数字档案集成高清可视化
- 批准号:
22KJ3026 - 财政年份:2023
- 资助金额:
$ 21.78万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Research on multilingual data integration for digital archives of Japanese culture
日本文化数字档案多语言数据集成研究
- 批准号:
23K11780 - 财政年份:2023
- 资助金额:
$ 21.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Preliminary Study for Constructing International Network of Image Archives on Afghan Cultural Heritages
构建阿富汗文化遗产国际图像档案网络的初步研究
- 批准号:
23K00915 - 财政年份:2023
- 资助金额:
$ 21.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




