Metal Nanoclusters as Heterogeneous Catalysts in Flow Reactors
金属纳米团簇作为流动反应器中的多相催化剂
基本信息
- 批准号:2745858
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Metal nanoclusters (MNCs) are metal atom clusters with diameters smaller than 2.0 nm, and can be composed of a single or multiple metals. MNCs show promise as heterogeneous catalysts, where the clusters are deposited on a support or encapsulated. These catalysts achieve the high surface area of traditional homogeneous catalysts exhibiting high activity and selectivity, whilst retaining the stability and separation ease of heterogeneous catalysts. Such characteristics can enable performance that is not achievable using nanoparticle or single atom catalysts. MNC catalysts also drastically reduce the amount of metal required for catalysis which is beneficial for rare or expensive metals and highly desirable from a sustainability perspective. To date, MNCs have generally been synthesised using wet chemistry methods which require multiple steps, produce waste and are not scalable, preventing commercial application. One preparation technique that can overcome these issues is magnetron sputtering. This physical process can disperse planar metal clusters directly onto supports in a single step, with a high level of control over metal loading and cluster size. Unlike wet chemistry methods, the process does not produce any chemical waste which is crucial as it becomes more important to reduce the impact of chemical research on the environment. The use of magnetron sputtering will also enable MNC heterogeneous catalysts to be generated at a scale and throughput that does not limit their research. In parallel to this, heterogeneous catalysis in flow is a growing field and presents huge potential to improve existing chemical processes as well as develop new and more sustainable chemistry. Commonly, packed bed reactors are used, however these can have limitations with respect to mixing, heat transfer and control over the flow of the reaction mixture. As a result, many novel reactor systems have been developed such as 3D-printed inserts and vortex devices. Proposed solution and methodology In this project, the two emerging sustainable technologies will be bridged together; MNCs will be fabricated by magnetron sputtering, and then used as heterogeneous catalysts in liquid flow. To the best of our knowledge, MNC catalysts have not yet been demonstrated in liquid flow, and it is not known which flow reactor approach would be best to harness their unique properties. This is a challenging question because specifics of MNC fabrication will be different for different flow reactor technologies. This project is set to establish MNC catalyst behaviour and performance in flow which is critically important for industrial challenges related to the sustainable use of transition metals for heterogeneous catalysis of flow processes. To achieve this step change a multidisciplinary approach is required. Heterogeneous MNC catalyst systems will be characterised through imaging and spectroscopy to understand their behaviour. Reaction outputs including product conversion, product purity and reaction rate will be analysed to understand catalyst performance. Carrying out the reactions in a variety of flow reactors will help to understand how different support types and reaction conditions impact this behaviour and performance. Initially, Palladium MNCs will be investigated with hydrogenation as a model reaction. By the end of the project we aim to have developed a new generation of high performing and sustainable heterogeneous catalysts for liquid flow with potential for application to industrially important reactions.
金属纳米团簇(MNCs)是直径小于2.0 nm的金属原子团簇,可以由单一或多种金属组成。MNCs显示出作为多相催化剂的前景,其中簇沉积在载体上或包封。这些催化剂实现了传统均相催化剂的高表面积,表现出高活性和选择性,同时保持了非均相催化剂的稳定性和分离容易性。这样的特性可以实现使用纳米颗粒或单原子催化剂无法实现的性能。MNC催化剂还大大减少了催化所需的金属量,这对稀有或昂贵的金属是有益的,并且从可持续性的角度来看是非常理想的。迄今为止,通常使用湿化学方法合成MNC,该方法需要多个步骤,产生废物并且不可扩展,从而阻碍了商业应用。可以克服这些问题的一种制备技术是磁控溅射。这种物理过程可以在单个步骤中将平面金属簇直接分散到载体上,对金属负载和簇大小具有高水平的控制。与湿化学方法不同,该过程不会产生任何化学废物,这一点至关重要,因为减少化学研究对环境的影响变得更加重要。磁控溅射的使用还将使MNC多相催化剂能够以不限制其研究的规模和产量产生。与此同时,流动中的多相催化是一个不断发展的领域,在改善现有化学过程以及开发新的更可持续的化学方面具有巨大的潜力。通常,使用填充床反应器,然而这些反应器在混合、传热和控制反应混合物的流动方面可能具有限制。因此,已经开发了许多新型反应器系统,例如3D打印插入物和涡流装置。建议的解决方案和方法在这个项目中,这两种新兴的可持续技术将被连接在一起; MNCs将通过磁控溅射制造,然后用作液体流动中的非均相催化剂。据我们所知,MNC催化剂尚未在液体流动中得到证实,并且不知道哪种流动反应器方法最适合利用其独特的性质。这是一个具有挑战性的问题,因为MNC制造的细节对于不同的流动反应器技术将是不同的。该项目旨在建立流动中的MNC催化剂行为和性能,这对于与过渡金属在流动过程多相催化中的可持续使用相关的工业挑战至关重要。为了实现这一步的变化,需要采取多学科的方法。多相MNC催化剂系统将通过成像和光谱来表征,以了解它们的行为。将分析包括产品转化率、产品纯度和反应速率在内的反应输出,以了解催化剂性能。在各种流动反应器中进行反应将有助于理解不同的载体类型和反应条件如何影响这种行为和性能。首先,钯MNC将与氢化作为模型反应进行研究。到项目结束时,我们的目标是开发出新一代高性能和可持续的多相催化剂,用于液体流动,具有应用于工业重要反应的潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Beyond thiols, beyond gold: Novel NHC-stabilized nanoclusters in catalysis
超越硫醇,超越金:催化中新型 NHC 稳定纳米团簇
- 批准号:
23K21120 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Probing the Electronic Structure and Chemical Bonding of Cryogenically-Cooled Boron and Metal-Boride Nanoclusters
探究低温冷却硼和金属硼化物纳米团簇的电子结构和化学键合
- 批准号:
2403841 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Atomically precise, multi-ligand functionalised metal nanoclusters to combat bacterial antibiotic resistance
原子精确的多配体功能化金属纳米簇可对抗细菌抗生素耐药性
- 批准号:
2882405 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Construction of Functional Chemistry SystemUsing Precision Metal Nanoclusters as a Compositional Unit
以精密金属纳米团簇为组成单元构建功能化学体系
- 批准号:
23H00289 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)
Insights on metal nanoclusters (MNCs) (de)hydrogenation for on-board hydrogen storage application using electron microscopy and spectroscopy technique
使用电子显微镜和光谱技术深入了解金属纳米团簇 (MNC) 车载储氢应用的(脱)氢
- 批准号:
2750864 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Atomically Precise Synthesis of Iron-Group Metal Nanoclusters to Probe the Origin of Superparamagnetism
原子级精确合成铁族金属纳米团簇探索超顺磁性的起源
- 批准号:
22K20558 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Ligand Regiochemistry on Gold Nanoclusters
金纳米团簇上的配体区域化学
- 批准号:
2204110 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Nanoclusters, nanoparticles, and surfaces: Bridging the gap between homogeneous and heterogeneous catalysis.
纳米团簇、纳米颗粒和表面:弥合均相催化和非均相催化之间的差距。
- 批准号:
RGPIN-2021-03144 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Synthesis of size-controlled gold nanoclusters using CD-MOF as a template
以CD-MOF为模板合成尺寸可控的金纳米团簇
- 批准号:
21K20492 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Functional Nanomaterials based on Porous Ionic Crystals and Metal Nanoparticles/Nanoclusters
基于多孔离子晶体和金属纳米颗粒/纳米团簇的功能纳米材料
- 批准号:
21K14639 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists