Sustainable Geotechnical Design: Temperature-water-plant-soil coupling for modelling soil inherent heterogeneity under climatic uncertainty due to glo

可持续岩土工程设计:温度-水-植物-土壤耦合,用于模拟全球气候不确定性下土壤固有的异质性

基本信息

  • 批准号:
    2747186
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Climate change is affecting the amount and spatial distribution of precipitation and timings worldwide (Bouwer, 2003; Cosgrove and Loucks, 2015; IPCC, 2021). Climate change is increasing the existing risks and vulnerabilities associated with water disasters, due to changing patterns of some hazards and increased in biodiversity exposure (Vardon 2015; Moftakhari et al. 2017a; 2017b; IPCC, 2014; IPCC, 2021), causing many existing infrastructures to fail. Hence, we have to rethink our design approaches. The question, therefore, is how do we design to meet the increasing pressure of global warming?Natural soil is inherently heterogeneous composed of biotic and abiotic components due to its historical formation process. Most soils are naturally layered consisting of discontinuities in the vertical and horizontal planes, having varying physical, mechanical, chemical and biological properties. These biotic and abiotic properties are affected by external environmental conditions, such precipitation and temperatures changes (Aalto et al. 2019). From engineering perspective, soil is conceptualised soil as multiphase, consisting three phases - solids, water and air. Hence, multiphysics coupling has gained popularity in geotechnical engineering literature (Wantanabe et al., 2009; Keyes, 2012) owing to the multi properties and phases of soils. Scientific challenge is to able to model soil inherent heterogeneity of biotic and abiotic components under the influence of extreme weather conditions needed to understand, design and manage geotechnical infrastructure sustainability. To date most scientific literatures has focused on Thermo-Hydro-Mechanical-Chemical coupling (Simoni, 2008; Wantanabe et al., 2009; Zhou, 2015; Bond et al. 2016; Ogata, et al, 2018; Tao et al, 2019; Zheng et. al, 2019) and little consideration has been given to the interactions between the biotic and abiotic components, in particular, roots-soil, which is an emerging field of biogeotechnics. Hence my work will focus on temperature-water-plant-soil coupling by producing a novel 3-D theoretical model against experimental validation, which will be able to deal with different types of problems of practical interest to engineers.Therefore, the main aim of this research is to develop thermo-hydro-plant-soil coupling model to investigate the inherent heterogeneity of soil and its impact on roots-microbes function on the stability of soils under changing climatic conditions due to global warming.Objectives of this study are: To develop thermo-hydro-mechanical-biotic coupled model for modelling the inherent variability in soil under varying climate conditions and calibrate the model using existing data; To validate the resulting model using wheat growth experimental data from University of Leeds pilot plot Investigate interactions between microbes and soil properties under varying climate conditions To find the relationship between carbon and nutrient applications, microbe populations and plant growth To demonstrate the difference in wheat yields across a range of N availabilities To investigate the influence of plant growth on soil stability (shear strength)
气候变化正在影响全球降水和降水时间的数量和空间分布(Bouwer, 2003; Cosgrove和Loucks, 2015; IPCC, 2021)。由于某些灾害模式的改变和生物多样性暴露的增加,气候变化正在增加与水灾害相关的现有风险和脆弱性(Vardon 2015; Moftakhari等人2017a; 2017b; IPCC, 2014; IPCC, 2021),导致许多现有基础设施失效。因此,我们必须重新思考我们的设计方法。因此,问题是我们如何设计来应对全球变暖带来的日益增长的压力?自然土壤由于其历史形成过程,具有由生物和非生物成分组成的内在异质性。大多数土壤是天然分层的,由垂直和水平面上的不连续组成,具有不同的物理、机械、化学和生物特性。这些生物和非生物特性受到降水和温度变化等外部环境条件的影响(Aalto et al. 2019)。从工程的角度来看,土壤的概念是多相的,由固体、水和空气三个阶段组成。因此,多物理场耦合在岩土工程文献中越来越受欢迎(wantabe et al., 2009; Keyes, 2012),因为土壤具有多种性质和相。科学挑战是能够在极端天气条件的影响下模拟土壤中生物和非生物成分的固有异质性,以理解、设计和管理岩土基础设施的可持续性。迄今为止,大多数科学文献都集中在热-水-机械-化学耦合上(Simoni, 2008; Wantanabe等人,2009;Zhou, 2015; Bond等人,2016;Ogata等人,2018;Tao等人,2019;Zheng等人,2019),很少考虑生物和非生物组分之间的相互作用,特别是根-土壤之间的相互作用,这是生物岩土技术的一个新兴领域。因此,我的工作将集中在温度-水-植物-土壤耦合上,通过产生一种新的3-D理论模型来对抗实验验证,这将能够处理工程师实际感兴趣的不同类型的问题。因此,本研究的主要目的是建立热-水-植物-土壤耦合模型,研究全球变暖导致的气候条件变化下土壤的内在异质性及其对根-微生物功能对土壤稳定性的影响。本研究的目的是:建立热-水-机械-生物耦合模型,用于模拟不同气候条件下土壤的固有变异性,并利用现有数据对模型进行校准;研究不同气候条件下微生物与土壤特性之间的相互作用发现碳与养分施用、微生物种群与植物生长之间的关系证明不同氮效度下小麦产量的差异研究植物生长对土壤稳定性(抗剪强度)的影响

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Reducing geotechnical design conservatism to secure floating wind energy
减少岩土设计保守性以确保浮动风能
  • 批准号:
    DP230101849
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Challenges to Failure Scenario Guided Design of Geotechnical Structures
岩土结构失效情景引导设计面临的挑战
  • 批准号:
    22H01583
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Design of sustainable and resilient geotechnical infrastructure for transportation systems
交通系统可持续和弹性岩土基础设施的设计
  • 批准号:
    RGPIN-2020-04761
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Reliability-based analysis and design of geotechnical soil-structures and transparent granular soils for geotechnical testing
用于岩土工程测试的岩土结构和透明颗粒土的基于可靠性的分析和设计
  • 批准号:
    RGPIN-2018-04076
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Geotechnical and Structural Paradigms for the Design, Implementation, and Operation of Small Modular Reactors in Canada's North
加拿大北部小型模块化反应堆设计、实施和运行的岩土工程和结构范例
  • 批准号:
    580452-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Design of sustainable and resilient geotechnical infrastructure for transportation systems
交通系统可持续和弹性岩土基础设施的设计
  • 批准号:
    RGPAS-2020-00101
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Reliability-based analysis and design of geotechnical soil-structures and transparent granular soils for geotechnical testing
用于岩土工程测试的岩土结构和透明颗粒土的基于可靠性的分析和设计
  • 批准号:
    RGPIN-2018-04076
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Reliability-Based Geotechnical Design
基于可靠性的岩土工程设计
  • 批准号:
    RGPIN-2016-05433
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Development of machine learning approaches to geotechnical design of marine renewable energy foundations
开发海洋可再生能源基础岩土工程设计的机器学习方法
  • 批准号:
    2611858
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Studentship
Design of sustainable and resilient geotechnical infrastructure for transportation systems
交通系统可持续和弹性岩土基础设施的设计
  • 批准号:
    RGPAS-2020-00101
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了