Improving Rational Drug Design for Membrane Targets with AI and Advanced Simulation

利用人工智能和高级模拟改进膜靶标的合理药物设计

基本信息

  • 批准号:
    2747584
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

We aim to develop new state-of-the-art tools that will accelerate the discovery of medicines for very difficult and under-explored membrane protein drug targets. The proposal builds upon a very successful previous iCASE studentship between the two partners, but will extend it into new areas of discovery. The timing of this project will also allow an optimal overlap of knowledge transfer between successive students.In previous work, we established methodologies for state-of-the-art binding affinity calculations for lipid-exposed binding sites. The work, which breaks new ground, is currently being evaluated within Vertex in terms of how it can be integrated into existing workflows. In this studentship, we wish to explore the development of these tools to compounds that typically act at the membrane-protein-water interface - possibly the most complex solvent environment that a drug can act at, and to date is an area that remains under-explored in terms of drug-design approaches.Furthermore, this area is particularly timely, as there has been a recent slew of publications, based upon the cryo-EM revolution, that have shown known drugs interacting at sites that sit in the bilayer-water-protein interface environment. As more and more structural information appears (now also substantially supplemented by the success of AlphaFold), it will become essential to characterise the dynamics and conformational properties of these sites in order to optimize the drug design process.Systems that are of interest to both Biggin and Vertex, are ion channels (see the recent press release regarding VX-548 - https://investors.vrtx.com/news-releases/news-release-details/vertex-announces-nav18-inhibitor-advancing-phase-2-clinical) and this is where the project will focus., There is also a substantial amount of data (structural, pharmacological, electrophysiological) both in the public domain as well as within Vertex. The key aims of the project are to 1) Characterize and understand the problems associated with making accurate absolute binding free energy (affinity) predictions for these types of binding sites 2) To investigate electric-field effects in these calculations and 3) To develop AI-based approaches to speed up key elements of this process - either the calculations per se or predictions without expensive calculations at all.The results, although focussed on channels will be broadly applicable to many other targets of interest (CFTR, transporters, etc). Novel medicines are both an MRC prioritised area of research (new technologies for advanced therapies) and in the remit of the scientific vision of Vertex. The timing of this synergistic project is particularly appropriate - recent cryo-EM structures of NaV channels, improvements in AI approaches (which we are already incorporating) and the positioning of both partners at the forefront of these areas means that this presents a fantastic opportunity to make significant progress in a difficult field.Throughout the studentship, the student will be gaining key expertise in performing ABFE calculations and will be developing and applying computational methods that will enhance our knowledge of conformational changes and properties of ligand-binding within receptor proteins. These skills fall within the MRC remit of Molecular and cellular medicine under the pharmacology, structural biology and biophysics themes. The student will probe into the atomic organization of molecules and macromolecular complexes and will explore functional relationships between cellular components. Developments on these fronts will enable us to better model the mechanics of drug action at molecular, cellular and systems levels and could help improve the efficacy and targeting of drugs.Description of work to be carried out at project partner, including the nature and frequency of contact:Given the proximity of Vertex (at Milton Park, just a few miles south of the University
我们的目标是开发新的最先进的工具,这将加速发现非常困难和探索不足的膜蛋白药物靶点的药物。该提案建立在两位合作伙伴之前非常成功的iCASE学生项目的基础上,但将其扩展到新的发现领域。这个项目的时间安排也将允许连续的学生之间的知识转移的最佳重叠。在以前的工作中,我们建立了最先进的结合亲和力计算脂质暴露的结合位点的方法。这项工作开辟了新的领域,目前正在Vertex内部进行评估,以确定如何将其集成到现有的工作流程中。在这个学生项目中,我们希望探索这些工具的发展,以通常作用于膜-蛋白质-水界面的化合物-可能是药物可以作用的最复杂的溶剂环境,迄今为止,这是一个在药物设计方法方面仍处于探索阶段的领域。此外,这一领域特别及时,因为最近有一系列基于cryo-EM革命的出版物,显示已知的药物在双层-水-蛋白质界面环境中相互作用。随着越来越多的结构信息出现(现在AlphaFold的成功也大大补充了这一点),为了优化药物设计过程,研究这些位点的动力学和构象特性将变得至关重要。(见最近关于VX-548 - https的新闻稿://investors.vrtx.com/news-releases/news-release-details/vertex-announces-nav 18-cardior-advancing-phase-2-clinical),这是该项目的重点。在公共领域和Vertex内部也有大量的数据(结构、药理学、电生理学)。该项目的主要目的是1)表征和理解与精确绝对结合自由能相关的问题这些类型的结合位点的(亲和力)预测2)研究这些计算中的电场效应,3)开发基于AI的方法来加速这一过程的关键要素-无论是计算本身还是预测,而无需昂贵的计算。结果,尽管集中在信道上,但是将广泛地适用于许多其他感兴趣的目标(CFTR、传输器等)。新药既是MRC优先研究的领域(先进疗法的新技术),也是Vertex科学愿景的范围。这个协同项目的时机特别合适-NaV通道的最新冷冻EM结构,AI方法的改进(我们已经纳入)和双方合作伙伴在这些领域的最前沿的定位意味着这是一个极好的机会,在一个困难的领域取得重大进展。在整个学生期间,学生将获得执行ABFE计算的关键专业知识,并将开发和应用计算方法,这将增强我们对受体蛋白质内配体结合的构象变化和性质的知识。这些技能属于MRC分子和细胞医学的药理学,结构生物学和生物物理学主题。学生将探索分子和大分子复合物的原子组织,并探索细胞成分之间的功能关系。在这些方面的发展将使我们能够更好地在分子、细胞和系统水平上模拟药物作用的机制,并有助于提高药物的疗效和靶向性。项目合作伙伴将开展的工作描述,包括联系的性质和频率:鉴于Vertex的邻近性(位于大学以南几英里的米尔顿公园)

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

基于Rational Krylov法和小波域稀疏约束的时间域海洋电磁三维正反演研究
  • 批准号:
    41804098
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于Rational-Tensor(RTCam)摄像机模型的序列图像间几何框架研究
  • 批准号:
    61072105
  • 批准年份:
    2010
  • 资助金额:
    29.0 万元
  • 项目类别:
    面上项目

相似海外基金

FET: Small: Rapid and Rational Drug-Cocktail Formulation and Discovery Via Electronic Circuits
FET:小型:通过电子电路快速合理地配制和发现药物混合物
  • 批准号:
    2240264
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Quantum Chemistry Methods for Rational Drug Design
合理药物设计的量子化学方法
  • 批准号:
    10697148
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Enabling Rational Design of Drug Targeting Protein-Protein Interactions with Physics-based Computational Modeling
通过基于物理的计算模型合理设计靶向药物的蛋白质-蛋白质相互作用
  • 批准号:
    10710974
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
A combined experimental and computational approach for the rational synthesis of rotaxanes as 'smart' drug delivery systems
合理合成轮烷作为“智能”药物输送系统的实验和计算相结合的方法
  • 批准号:
    2896287
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Rational design of drug combinations to target chemotherapy resistance in high-grade serous ovarian cancer via metabolomic profiling of patient-derived organoids
通过患者来源类器官的代谢组学分析,合理设计药物组合,以针对高级别浆液性卵巢癌的化疗耐药性
  • 批准号:
    10201800
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Rational Antimicrobial Nanoparticle Development For Use In Combating Drug Resistant Bacteria
用于对抗耐药细菌的合理抗菌纳米颗粒开发
  • 批准号:
    547529-2020
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Rational design of drug combinations to target chemotherapy resistance in high-grade serous ovarian cancer via metabolomic profiling of patient-derived organoids
通过患者来源类器官的代谢组学分析,合理设计药物组合,以针对高级别浆液性卵巢癌的化疗耐药性
  • 批准号:
    10401850
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Rational Antimicrobial Nanoparticle Development For Use In Combating Drug Resistant Bacteria
用于对抗耐药细菌的合理抗菌纳米颗粒开发
  • 批准号:
    547529-2020
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
RP-3: Elucidating Mechanisms of Sensitivity and Resistance to Checkpoint Blockade Therapy for Rational Multi-Drug Immunotherapy in Urothelial Cancers
RP-3:阐明尿路上皮癌合理多药免疫治疗检查点阻断疗法的敏感性和耐药性机制
  • 批准号:
    10453635
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Rational Design of Elastin-Based Drug Delivery Systems Using Molecular Simulations
利用分子模拟合理设计基于弹性蛋白的药物输送系统
  • 批准号:
    528715-2018
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了