Exploring Efficient Automated Design Choices for Robust Machine Learning Algorithms

探索稳健的机器学习算法的高效自动化设计选择

基本信息

  • 批准号:
    2748823
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Are you familiar with machine learning? Do you have an aptitude for analysing and disseminating information from a variety of outcomes? Would you like to assist GCHQ develop and design new algorithms for both time-efficiency and energy-efficiency solutions? Are you keen on developing novel approaches and using modern computing architectures that make it easy to apply Deep Learning and Gaussian Processes to real problems?Applying Machine Learning (ML) currently requires the data scientist to make design choices. These choices might relate, for example, to: choosing the number of layers and the number of neurons in each layer of a Deep Neural Network; choosing which kernel family to use in a Gaussian Process. Since ML algorithms often involve time-consuming training regimes, data scientists often find it laborious to iterate between (re)-identifying candidate design choices and (re)-training the ML algorithms. Furthermore, different design choices can alter both how many hyper-parameters (e.g. neuron weights or kernel widths and cross-covariance terms) need to considered but also how challenging it is to optimise the hyper-parameters of the ML algorithm. Since practitioners have limited time to perform sensitivity analyses with respect to these parameters, design choice are typically based on estimated performance (calculated as an average over the test set) with very limited, if any, consideration for the variance in this estimate. It is important that this variance is considered since it will determine how likely it is that performance on the test set will accurately predict empirical performance when the algorithm is deployed operationally. Indeed, robust performance requires that we do not optimise the hyper-parameters (e.g. using stochastic gradient descent) but generate a set of samples for the hyper-parameters that are consistent with the data and then average across these sampled values for the hyper-parameters.Numerical Bayesian algorithms exist that can explore the design choices and the possible hyper-parameter values associated with each design choice. Mature variants of these algorithms exist and involve the use of Markov-Chain Monte Carlo (MCMC), with Reversible Jump MCMC (RJMCMC) being a variant applicable in contexts where the design choice alters the number of hyper-parameters that need to be considered. In general, and particularly in the case of RJMCMC, these mature algorithms are sufficiently slow and computationally demanding that they are widely assumed to be impractical for practical use in real-world scenarios.Recent advances at the University of Liverpool have identified that Sequential Monte Carlo (SMC) samplers are an alternative family of numerical Bayesian algorithms that offer the potential to improve on both the time-efficiency and energy-efficiency of MCMC algorithms. In this context, SMC samplers can be considered to comprise a team of sub-algorithms that collaborate to explore the space of design choices and associated hyper-parameters. By distributing the sub-algorithms across parallel computational resources, SMC samplers can improve time-efficiency. Since the sub-algorithms only need to avoid all failing at once, they can each be more adventurous in their exploration than the single MCMC algorithm: this can lead to energy-efficiency gains. Perhaps surprisingly, the potential for SMC samplers to automate design choices, while also exploring the associated hyper-parameter values, is largely unexplored. This PhD will investigate the significant potential to apply SMC samplers in this context.
你熟悉机器学习吗?你有分析和传播来自各种结果的信息的能力吗?您是否愿意协助GCHQ为时间效率和能源效率解决方案开发和设计新的算法?您是否热衷于开发新的方法和使用现代计算体系结构,以便轻松地将深度学习和高斯过程应用于实际问题?应用机器学习(ML)目前需要数据科学家做出设计选择。例如,这些选择可能涉及:选择深度神经网络的层数和每层中的神经元数量;选择在高斯过程中使用哪个核心族。由于ML算法通常涉及耗时的训练机制,数据科学家经常发现在(重新)识别候选设计选择和(重新)训练ML算法之间迭代是很费力的。此外,不同的设计选择既可以改变需要考虑的超参数(例如,神经元权重或核宽度和互协方差项)的数量,也可以改变优化ML算法的超参数的挑战性。由于实践者对这些参数进行敏感性分析的时间有限,设计选择通常基于估计的性能(以测试集上的平均值计算),而对此估计中的差异的考虑非常有限。重要的是要考虑这种差异,因为它将确定当算法部署到操作中时,测试集上的性能准确预测经验性能的可能性有多大。事实上,稳健的性能要求我们不优化超参数(例如使用随机梯度下降),而是为与数据一致的超参数生成一组样本,然后对这些超参数的采样值进行平均。存在数值贝叶斯算法,可以探索设计选择以及与每个设计选择相关联的可能的超参数值。存在这些算法的成熟变体,并且涉及马尔可夫链蒙特卡罗(MCMC)的使用,其中可逆跳跃MCMC(RJMCMC)是一种变体,适用于设计选择改变需要考虑的超参数的数量的情况。总的来说,尤其是在RJMCMC的情况下,这些成熟的算法足够慢,并且对计算的要求很高,以至于它们被广泛地假设为不适用于现实世界的场景。利物浦大学最近的进展已经确认,序列蒙特卡罗(SMC)采样器是一种替代的数值贝叶斯算法家族,提供了提高MCMC算法的时间效率和能量效率的潜力。在这种情况下,SMC采样器可以被认为是由一组子算法组成的,这些子算法协作探索设计选择空间和相关的超参数。通过将子算法分布在并行计算资源上,SMC采样器可以提高时间效率。由于子算法只需要避免一次全部失败,因此它们在探索过程中可以比单一的MCMC算法更具冒险精神:这可以带来能源效率的提高。也许令人惊讶的是,SMC采样器在探索相关超参数值的同时,实现设计选择自动化的潜力在很大程度上还没有开发出来。本博士学位将探讨在此背景下应用SMC采样器的巨大潜力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Safe and efficient eco-driving using connected and automated vehicles
使用联网和自动驾驶车辆实现安全高效的生态驾驶
  • 批准号:
    DP240102189
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Collaborative Research: SHF: Medium: Automated energy-efficient sensor data winnowing using native analog processing
协作研究:SHF:中:使用本机模拟处理进行自动节能传感器数据筛选
  • 批准号:
    2212346
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
PFI-TT: Development of an Automated Cell Culturing Platform for Highly Efficient and Reliable Drug Testing in Physiologically Representative Disease Models
PFI-TT:开发自动化细胞培养平台,在生理代表性疾病模型中进行高效可靠的药物测试
  • 批准号:
    2141029
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Automated Dynamic Flow System for Efficient Mapping of Reaction Design Spaces
用于高效映射反应设计空间的自动动态流系统
  • 批准号:
    2751715
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Collaborative Research: SHF: Medium: Automated energy-efficient sensor data winnowing using native analog processing
协作研究:SHF:中:使用本机模拟处理进行自动节能传感器数据筛选
  • 批准号:
    2212345
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Automated and Efficient Machine Learning as a Service
职业:自动化高效的机器学习即服务
  • 批准号:
    2305491
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CPS: Medium: Collaborative Research: Srch3D: Efficient 3D Model Search via Online Manufacturing-specific Object Recognition and Automated Deep Learning-Based Design Classification
CPS:中:协作研究:Srch3D:通过在线制造特定对象识别和基于自动化深度学习的设计分类进行高效 3D 模型搜索
  • 批准号:
    2240733
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
I-Corps: An efficient automated biopsy diagnostic process
I-Corps:高效的自动化活检诊断流程
  • 批准号:
    2107886
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Efficient automated processing for gene-engineered autologous cell therapies
基因工程自体细胞疗法的高效自动化处理
  • 批准号:
    10323695
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
CAREER: Automated and Efficient Machine Learning as a Service
职业:自动化高效的机器学习即服务
  • 批准号:
    2048044
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了