A novel optical fibre analysis system for particle accelerators
一种用于粒子加速器的新型光纤分析系统
基本信息
- 批准号:2751225
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Some processes occurring within particle accelerators, such as stray particles escaping from the beam (beam loss), can damage or irradiate the machine. This can impede or prevent the function of the accelerator, and the irradiation delays machine maintenance as any residual radioactivity it creates must decay to safe levels before work can begin.Particle accelerator user facilities commonly aim to minimise machine downtime to offer maximum availability of beam time to facility users. Since a damaged machine requires downtime for repairs [1], and high irradiation levels extend the machine downtime, prevention of both damage and irradiation is important to this goal. Typically, this is performed through monitoring of beam losses to ensure its occurrences are kept to safe levels.Localised detectors such as ionisation chambers (ICs) are commonly used to monitor beam losses. However, they can each individually only monitor a small area; hence it is unfeasible to precisely determine locations of beam loss using ICs. [2] RF accelerating cavities can sometimes undergo sparking within them (RF breakdown). This damages the cavity surface and also the klystron amplifiers as the incoming RF power is reflected [3], [4]. Conventional RF breakdown detectors follow the increase in current or pressure that accompanies a breakdown [5]. Since these detectors respond after the onset of breakdown, the available damage mitigation methods are limited to reactive measures.A solution is offered through optical fibre-based detectors to detect beam losses and RF breakdowns through the showers of secondary particles these events produce. Passage of these relativistic particles through an optical fibre produces Cherenkov light, which propagates to photodetectors. A time-of-flight calculation is then used to determine the loss location [6]. These detectors are non-invasive which can offer, continuous coverage of a machine; simultaneous monitoring of both beam losses and RF breakdowns; a fast response time (on the order of a few nanoseconds); and event location resolution on the order of a few cm (for the current version of the detector system). Unlike ICs, optical fibres are insensitive to magnetic fields and X-rays. This allows fibres to be positioned in areas where many other detectors cannot, such as inside magnetic structures like undulators [7].Optical fibre technology has been successful on a variety of accelerators, where it has demonstrated sufficient capability to protect individual accelerator sections [8, 9] or even entire accelerators [10]; in addition to successfully monitoring dark current and breakdowns in RF cavities [4], [11]. This project will develop and benchmark the new version of the optical fibre detector system and demonstrate its capabilities for beam loss and RF breakdown resolution as a machine protection system for energy recovery linear accelerators (ERLs).ERLs are a type of novel accelerator that seek to decrease accelerator energy demands by extracting energy from its used, high-energy beams and subsequently transferring it to fresh, low-energy beams. Both used and fresh particle bunches (sub-segments of beams) often circulate simultaneously within the ERL. Contemporary examples include CBETA at Cornell University [12], and the LHeC collider proposed by CERN [13]. Key challenges for this application include distinguishing beam loss signals from individual bunches of fast-repeating beams, such as those typically produced in ERLs; and discriminating between the energies of these bunches to gauge the progress of each bunch through the ERL.This project also aims to introduce machine learning to the oBLM system [3], [14], for the prediction and prevention of machine damaging events. This allows for the implementation of proactive rather than reactive intervention methods. Testing will be carried out at various facilities, such as CLARA (Daresbury Laboratory), CLEAR (CERN), and CBETA (Cornell).
在粒子加速器中发生的一些过程,例如从光束中逸出的杂散粒子(光束损耗),可能会损坏或照射机器。这可能会阻碍或阻止加速器的功能,并且辐射延迟了机器的维护,因为它产生的任何残留放射性都必须在工作开始之前衰减到安全水平。粒子加速器用户设施通常旨在最大限度地减少机器停机时间,为设施用户提供最大的可用光束时间。由于损坏的机器需要停机维修,而高辐照水平延长了机器停机时间,因此预防损坏和辐照对于实现这一目标非常重要。通常,这是通过监测波束损耗来实现的,以确保其发生在安全水平。局部探测器,如电离室(ic)通常用于监测光束损失。然而,他们每个人只能单独监控一小块区域;因此,利用集成电路精确确定波束损耗的位置是不可行的。[2]射频加速腔内有时会产生火花(射频击穿)。这会损坏腔面和速调管放大器,因为传入的射频功率被反射[3],[4]。传统的射频击穿探测器会随着击穿[5]时电流或压力的增加而增加。由于这些检测器在击穿发生后才作出反应,因此现有的减轻损害的方法仅限于反应性措施。一种解决方案是通过基于光纤的探测器,通过这些事件产生的二次粒子阵雨来检测光束损失和射频击穿。这些相对论性粒子通过光纤产生切伦科夫光,这种光传播到光电探测器。然后使用飞行时间计算来确定损失位置[6]。这些探测器是非侵入性的,可以提供对机器的连续覆盖;同时监测波束损耗和射频击穿;快速的响应时间(大约几纳秒);而事件定位分辨率在几厘米量级(适用于当前版本的探测器系统)。与集成电路不同,光纤对磁场和x射线不敏感。这使得光纤可以定位在许多其他探测器无法定位的区域,比如像波动体[7]这样的磁性结构内部。光纤技术已经在各种加速器上取得了成功,在这些加速器上,它已经证明了足够的能力来保护单个加速器部分[8,9]甚至整个加速器[10];除了成功监测RF腔[4],[11]中的暗电流和击穿。该项目将开发和测试新版本的光纤探测器系统,并展示其作为能量回收线性加速器(ERLs)的机器保护系统的光束损耗和射频击穿分辨率的能力。erl是一种新型加速器,通过从已使用的高能束流中提取能量,然后将其转移到新的低能量束流中,从而减少加速器的能量需求。旧粒子束和新粒子束(粒子束的子段)经常在ERL内同时循环。当代的例子包括康奈尔大学的CBETA,以及欧洲核子研究中心提出的LHeC对撞机。该应用面临的主要挑战包括:从单个快速重复波束中区分波束损耗信号,例如通常在erl中产生的波束;并区分这些束的能量,以衡量每个束通过ERL的进展。本项目还旨在将机器学习引入到obm系统[3],[14]中,用于机器损坏事件的预测和预防。这就允许实施主动而不是被动的干预方法。测试将在不同的机构进行,如CLARA(达斯伯里实验室)、CLEAR(欧洲核子研究中心)和CBETA(康奈尔大学)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
基于深穿透拉曼光谱的安全光照剂量的深层病灶无创检测与深度预测
- 批准号:82372016
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
基于太赫兹光谱近场成像技术的应力场测量方法
- 批准号:11572217
- 批准年份:2015
- 资助金额:120.0 万元
- 项目类别:面上项目
阵风场中非定常大气湍流对沙粒跃移运动的影响
- 批准号:11102153
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于两级表面等离子共振增强结构的高灵敏度拉曼散射成像物理机制及制作工艺研究
- 批准号:61007018
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
堆栈型全光缓存研究
- 批准号:60977003
- 批准年份:2009
- 资助金额:35.0 万元
- 项目类别:面上项目
基于回廊耳语模式的非圆对称光学微谐振腔的发光特性及传感性能研究
- 批准号:10574032
- 批准年份:2005
- 资助金额:33.0 万元
- 项目类别:面上项目
基于软光刻法的光学互连耦合结构研究
- 批准号:60477019
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
新型液晶可变光衰减器的研制
- 批准号:60377019
- 批准年份:2003
- 资助金额:25.0 万元
- 项目类别:面上项目
利用混合遗传算法从多方位光流场恢复3D运动与结构的研究
- 批准号:60305003
- 批准年份:2003
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
电极/溶液界面上分子取向电位调控的准确测量
- 批准号:20373076
- 批准年份:2003
- 资助金额:27.0 万元
- 项目类别:面上项目
相似海外基金
High-speed optical fibre switches for quantum photonic networks.
用于量子光子网络的高速光纤交换机。
- 批准号:
2888749 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Distributed gas sensing using hollow core optical fibre
使用空心光纤的分布式气体传感
- 批准号:
EP/X011674/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Distributed gas sensing using hollow core optical fibre
使用空心光纤的分布式气体传感
- 批准号:
EP/X012182/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Massive Space Division Multiplexing for Optical Fibre Communication Systems
光纤通信系统的大规模空分复用
- 批准号:
2741046 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Optical fibre monitoring and measuring systems from the nanoscale to the human scale
从纳米尺度到人体尺度的光纤监控和测量系统
- 批准号:
RGPIN-2019-06255 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Understanding and Perfecting the Properties of Optical Fibre Coatings
了解并完善光纤涂层的性能
- 批准号:
2751091 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Extremely Wideband Optical Fibre Communication Systems
超宽带光纤通信系统
- 批准号:
EP/W015714/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
Advancing Quantum Communications using Next-Generation Optical Fibre
使用下一代光纤推进量子通信
- 批准号:
2742638 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Ultra-wideband Optical Fibre Transmission Systems
超宽带光纤传输系统
- 批准号:
2485936 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship
Low-Latency Fibre Optics Communications using Hollow Core Optical Fibres
使用空心光纤的低延迟光纤通信
- 批准号:
2612241 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship














{{item.name}}会员




