Design and optimisation of metasurface materials using AI/machine learning algorithms
使用人工智能/机器学习算法设计和优化超表面材料
基本信息
- 批准号:2751285
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Modern advances in technology have increased the demand for multifunctional components across the spectrum. In the Radio frequency (RF) world, wireless communications require efficient, tunable, inexpensive and smaller package antenna that can be put into smaller and smaller devices. Additionally, as we move into the next generation of wireless communication technology the designs of such antenna are becoming more complex. Due to this increased complexity automated techniques such as, AI and machine learning tools need to be used in order to deal with the amount of computation and complexity involved in these new upcoming technologies. Due to the complexity and certain applications designers of antennas have to compromise either size, functionality and fabrication cost. Metaferrite materials have become an attractive option for addressing most of these issues and have become a very useful tool for various applications from antennas to absorbers and the construction of complex spatial or frequency domain devices [1]. The main benefits of a metamaterial for antenna design is that they potentially enable the design of wide angle scanning and excellent beam performance, electronically controlled pointing and polarisation, low power consumption and can be flat, lightweight and small in size[2], answering many of the main issues that are facing the demand for new technological devices. These metamaterials are engineered materials also called left-handed (LH) materials or backward wave (BW) media or negative index materials (NIM) or double negative (DNG) media, [2] that exhibit interesting properties not otherwise seen in naturally occurring materials. Due to the increase in complexity of metamaterial designs it is not uncommon for machine learning techniques to be used by designers of these materials. Metamaterials consists of a substrate sandwiched between two metal layers where one is usually patterned with a unit cell array. This is where the machine learning techniques are mainly focused on designing and optimising. The significance of the research is that it will develop a machine learning assisted method that will assist with the rapid fabrication of samples for testing. Additionally, improving upon the performance of previous metamaterial designs in the geometric optimisation to material properties is envisaged. The proposed approach is highly novel as it seeks to holistically develop a platform of tools with end user applications. Research Aims and Objectives:To investigate the use of machine learning techniques in their functionality for metamaterial antenna design. To investigate the use of Slime mould algorithm (SMA) for metamaterial design and optimisation as this is a relatively new technique and has very little research currently into its use of metamaterial optimisation, to the researchers knowledge. To improve upon previous Neural Network frameworks built by a previous PhD in the group Yihan Ma, by implementing a mix of metaheuristic algorithms to upscale metamaterial designs to a much larger scale. Aim to push knowledge forward for the production of an automated holistic tool for metamaterial design, taking into account multiple objective parameters.
现代技术的进步增加了对各种多功能组件的需求。在射频 (RF) 领域,无线通信需要高效、可调谐、廉价且尺寸较小的封装天线,以便可以放入越来越小的设备中。此外,随着我们进入下一代无线通信技术,此类天线的设计变得更加复杂。由于复杂性增加,需要使用人工智能和机器学习工具等自动化技术来处理这些即将推出的新技术所涉及的计算量和复杂性。由于天线的复杂性和某些应用,天线设计者必须在尺寸、功能和制造成本之间做出妥协。偏铁氧体材料已成为解决大多数此类问题的有吸引力的选择,并且已成为从天线到吸收器以及复杂空间或频域设备的构建等各种应用的非常有用的工具[1]。超材料用于天线设计的主要优点是它们有可能实现广角扫描设计和出色的波束性能、电子控制指向和极化、低功耗,并且可以是扁平的、轻量的和小尺寸的[2],解决了新技术设备需求所面临的许多主要问题。这些超材料是工程材料,也称为左手 (LH) 材料或后向波 (BW) 介质或负折射率材料 (NIM) 或双负 (DNG) 介质,[2] 表现出天然材料中未见的有趣特性。由于超材料设计复杂性的增加,这些材料的设计者使用机器学习技术并不罕见。超材料由夹在两个金属层之间的基板组成,其中一层通常用晶胞阵列进行图案化。这是机器学习技术主要关注设计和优化的地方。该研究的意义在于,它将开发一种机器学习辅助方法,有助于快速制造测试样品。此外,还设想在材料特性的几何优化方面改进以前的超材料设计的性能。所提出的方法非常新颖,因为它寻求与最终用户应用程序整体开发一个工具平台。研究目的和目标:研究机器学习技术在超材料天线设计功能中的应用。研究史莱姆模算法 (SMA) 在超材料设计和优化中的使用,因为据研究人员所知,这是一项相对较新的技术,目前对其超材料优化的使用研究很少。为了改进由 Yihan Ma 小组的前任博士构建的先前神经网络框架,通过实施混合启发式算法将超材料设计提升到更大的规模。旨在推动知识的发展,以生产用于超材料设计的自动化整体工具,同时考虑多个客观参数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似海外基金
Structure-guided optimisation of light-driven microalgae cell factories
光驱动微藻细胞工厂的结构引导优化
- 批准号:
DP240101727 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Optimisation of Buildable Structures for 3D Concrete Printing
3D 混凝土打印可建造结构的优化
- 批准号:
DP240101708 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Average-case proximity for integer optimisation
整数优化的平均情况接近度
- 批准号:
EP/Y032551/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Integration of low-carbon hydrogen value chains for hard-to-decarbonise sectors with wider energy systems: Whole-systems modelling and optimisation
将难以脱碳行业的低碳氢价值链与更广泛的能源系统整合:全系统建模和优化
- 批准号:
EP/W033275/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Optimisation for Game Theory and Machine Learning
博弈论和机器学习的优化
- 批准号:
EP/X040461/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Evaluation and optimisation of new engineered human human apoferritins: protein nanocages for targeted drug delivery and intracellular cargo release
新型工程人类脱铁铁蛋白的评估和优化:用于靶向药物输送和细胞内货物释放的蛋白质纳米笼
- 批准号:
BB/Y008200/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Thermal Optimisation of Gigascale Solar Photovoltaics
千兆级太阳能光伏发电的热优化
- 批准号:
LP220100162 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Linkage Projects
New Frontiers in Large-Scale Polynomial Optimisation
大规模多项式优化的新领域
- 批准号:
DE240100674 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
Hybrid optimisation for coordinating autonomous trucks and drones
用于协调自动卡车和无人机的混合优化
- 批准号:
DE240100042 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
Design optimisation of ultrasonic hydrophones with inconsistent crossover calibrations
交叉校准不一致的超声波水听器的设计优化
- 批准号:
10089275 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Collaborative R&D














{{item.name}}会员




