Catalytic Ammonia Decomposition in Green Energy Supply

绿色能源供应中的催化氨分解

基本信息

  • 批准号:
    2754045
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Rising population has led to higher energy consumption of fossil fuel and thus trigger severe environmental crisis like global warming, sea level rise, acid rains etc. To address the ongoing environmental problem, extreme effort has been placed on the development of green energy source. Hydrogen, amongst all the others, has shown to be a promising candidate. Not only due to its high energy by mass, but also as the only product of combustion is water. However, commercializing hydrogen still faces some challenges. As hydrogen is the smallest molecule, it is extremely hard to store, not to mention its transportation. This leads to one essential bottleneck within the hydrogen economy, hydrogen storage and transportation. Ammonia (NH3) is considered as an effective solution to tackle down the above question. On one hand, ammonia contains relatively high hydrogen content. On the other hand, ammonia itself has a standard process for synthesis and storage. Ammonia synthesis is achieved through a sophisticated technique called the Haber-Bosch process, where nitrogen and hydrogen react to give ammonia. The produced ammonia can then be pressurized and safely stored as liquid form under mild condition at a relative low cost. This leaves the decomposition of ammonia back to nitrogen and hydrogen being the last puzzle for the hydrogen system via ammonia. Hence, development of effective catalyst for ammonia decomposition has become an essential task with high priority. In this project, effective ammonia decomposition is studied over a metal embedded on nitrogen doped carbon material. Evidence has shown that nitrogen doping on a layered carbon material can promote the catalytic activity of ammonia decomposition. However, the underlying mechanism is still unknown. It has been suggested by one previous paper published in our group that, during ammonia decomposition, the nitrogen from the N-Graphene might help to break the N-H bond in ammonia, via a H-N-M-N-H like Lewis pair transition state. Furthermore, nitrogen exists in different forms on the carbon layer, namely pyrrolic, pyridinic, quaternary and terminal. Each of them has different chemical properties which would have different impact on the overall reaction kinetics. Thus, further investigation would be carried out on the function of nitrogen environments towards the overall catalysis. The fundamental study would provide mechanistic understanding for future novel catalyst design. The project would be carried out with a combination of catalyst activity testing and essential in-situ and ex-situ characterisations. Catalyst will be tested in a quartz tube which is held in the vertical fixed-bed flow reactor. Ammonia is flown through the set-up with ammonia decomposition taking place in the reaction while the residue gas is analysed with an in-situ Gas chromatography. The conversion rate is calculated based on the intensity of the peaks of nitrogen, hydrogen and unreacted ammonia. As for characterisation, ex-situ BET, XRD, TEM TPD and TGA are used to understand the structure and chemical property of the catalyst. XPS will be carried out the reveal the nitrogen content and environment, in-situ IR will be performed to understand the bond formation and breakage during the reaction. Together with further computational calculation, a fundamental mechanism can be proposed for the reaction over this catalyst. My project would collaborate with Oxford Green Innotech (OXGRIN), a spin-out company from the University of Oxford, which is aiming for building a world-class One-Stop Catalyst Platform that comprises research, manufacture and integration with end user applications. This project falls within the EPSRC Energy and decarbonisation research area.
人口增长导致化石燃料的能源消耗增加,从而引发严重的环境危机,如全球变暖,海平面上升,酸雨等。为了解决持续的环境问题,已将极大的努力放在绿色能源的开发上。在所有其他物质中,氢已被证明是一个有希望的候选者。不仅因为它的高质量能量,而且因为燃烧的唯一产物是水。然而,氢的商业化仍面临一些挑战。由于氢是最小的分子,储存起来非常困难,更不用说运输了。这导致了氢经济中的一个重要瓶颈,即氢的储存和运输。氨(NH3)被认为是解决上述问题的有效解决方案。一方面,氨含有相对高的氢含量。另一方面,氨本身有一个标准的合成和储存过程。氨合成是通过一种称为哈伯-博世工艺的复杂技术实现的,在该工艺中,氮气和氢气反应生成氨。然后,所产生的氨可以被加压并以相对低的成本在温和的条件下以液体形式安全地储存。这使得氨分解回氮气和氢气成为通过氨的氢气系统的最后一个难题。因此,开发高效的氨分解催化剂已成为当务之急。在这个项目中,有效的氨分解是研究在氮掺杂的碳材料嵌入金属。有证据表明,在层状碳材料上掺杂氮可以促进氨分解的催化活性。然而,其潜在的机制仍然是未知的。我们小组先前发表的一篇论文已经提出,在氨分解过程中,来自N-石墨烯的氮可能有助于通过H-N-M-N-H类刘易斯对过渡态破坏氨中的N-H键。此外,氮以不同的形式存在于碳层上,即吡咯、吡啶、季铵和末端。它们各自具有不同的化学性质,这将对整体反应动力学产生不同的影响。因此,氮环境对整体催化作用的影响有待进一步研究。该基础研究为今后新型催化剂的设计提供了机理上的认识。该项目将结合催化剂活性测试和必要的原位和非原位表征进行。催化剂将在垂直固定床流动反应器中的石英管中进行测试。氨流过装置,在反应中发生氨分解,同时用原位气相色谱法分析残余气体。基于氮、氢和未反应的氨的峰的强度计算转化率。在表征方面,采用了非原位BET、XRD、TEM、TPD和TGA等手段对催化剂的结构和化学性质进行了研究。将进行XPS以揭示氮含量和环境,将进行原位IR以了解反应期间的键形成和断裂。结合进一步的计算,可以提出在该催化剂上反应的基本机理。我的项目将与牛津大学的衍生公司Oxford绿色Innotech(OXGRIN)合作,该公司旨在建立一个世界级的一站式催化剂平台,包括研究,制造和与最终用户应用程序的集成。该项目属于EPSRC能源和脱碳研究领域的福尔斯。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

SIRT5/ammonia信号通路介导适应性自噬在急性心肌梗死中的作用及其机制研究
  • 批准号:
    81900312
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Photo-thermal ammonia decomposition
光热氨分解
  • 批准号:
    DE230100789
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
RuCatDAH: Rational design of Ruthenium Catalysts towards efficient Decomposition of Ammonia for Hydrogen production
RuCatDAH:合理设计钌催化剂,实现氨高效分解制氢
  • 批准号:
    EP/Y024931/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Developing imide/amide catalysts for the ammonia decomposition process to produce hydrogen
开发用于氨分解过程制氢的酰亚胺/酰胺催化剂
  • 批准号:
    2751071
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Development of high-surface-area perovskite-type oxides for ammonia decomposition catalysts
用于氨分解催化剂的高比表面积钙钛矿型氧化物的开发
  • 批准号:
    20K05584
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of precious metal-free catalysts consisting of hydride material for ammonia synthesis and decomposition
含氢化物材料的无贵金属氨合成与分解催化剂的开发
  • 批准号:
    19H02512
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Ammonia decomposition reaction on electron-donating catalysts
给电子催化剂上的氨分解反应
  • 批准号:
    17H07423
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Development of photocatalysts and photoelectrodes for nitrogen fixation and ammonia decomposition as artificial photosynthesis
开发用于人工光合作用固氮和氨分解的光催化剂和光电极
  • 批准号:
    17H01217
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
An realistic improvement of reactor design to enhance ammonia decomposition rate for high quality high In content InGaN MOVPE growth
对反应器设计进行实际改进,以提高氨分解速率,实现高质量高 In 含量 InGaN MOVPE 生长
  • 批准号:
    16K06260
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of high performance solid catalysts for oxidative decomposition of ammonia in waste water under mild reaction conditions
温和反应条件下氧化分解废水中氨的高性能固体催化剂的研制
  • 批准号:
    26420782
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of catalysts for H2 production by ammonia decomposition under mild reaction condition
温和反应条件下氨分解制氢催化剂的研制
  • 批准号:
    24760641
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了