From amplitudes at strong coupling to theories of Class S
从强耦合振幅到 S 类理论
基本信息
- 批准号:2759201
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The study of scattering amplitudes for N=4 super Yang-Mills theories expresses amplitudes asfunctions on certain parameter spaces that have the structure of cluster varieties. Holographyvia the AdS/CFT correspondence endows these with certain geometric structures, often(pseudo-) hyper-Kahler, that encodes the amplitude at strong coupling. Analogous structuresarise in the construction of theories of class S. Class S theories are super-conformal fieldtheories (SCFTs) in four dimensions, which are obtained via compactification using a possiblypunctured Riemann surface with genus g from a 6d N=(2,0) SCFT. The 6d N=(2,0) theory is anon-Lagrangian theory constructed via M-theory. The punctures of the Riemann surface canencode data about the flavor symmetry of the Class S theory. The resulting Class S theory isoften non-Lagrangian, however, due to the N=2 supersymmetry, the low energy physics can bedescribed using the Seiberg-Witten approach in which the system becomes algebraicallyintegrable. In the case of theories of Class S, the specific integrable system that appears is aHitchin system. Hitchin systems are understood as Higgs bundles defined over the sameRiemann surface, which admit solutions to the Hitchen equations. In this way, the low energyphysics can be encoded onto the Riemann surface used in the compactification. A key propertyof the mathematical constructions is that the moduli space of possibly Higgs bundles has anatural hyper-Kahler structure. From the perspective of the N=4 super Yang-Mills at strongcoupling, the amplitude is obtained by calculating the area of a particular minimal surface, whichis the boundary of a particular null contour on the boundary of AdS. The minimization problemresults in a sinh-Gordon integrable system which is a special realization of a Hitchen system.The area can be expressed in terms of functions coming from a Y-system that solvesThermodynamic Bethe Anzats (TBA) equations. These TBA equations appear more generally inthe Higgs bundle construction when one attempts to construct coordinates on the hyper-Kahlermoduli space. The functions solving the Y-system and, more generally, the coordinates on themoduli space have a cluster variety structure. The project aims to try to establish some kind ofdictionary between the two constructions and to develop their study further. In addition, due tothe hyper-Kahler nature of the moduli space, there is a hope to try and apply twistor methodsand gain a different perspective.
N=4超Yang-Mills理论的散射振幅研究将振幅表达为具有簇变结构的某些参数空间上的函数。通过AdS/CFT对应的全息摄影赋予这些具有一定的几何结构,通常(伪)超卡勒,在强耦合下编码振幅。类似的结构出现在S类理论的构造中。S类理论是四维的超共形场论(SCFTs),它是通过从6d N=(2,0) SCFT中使用具有g属的可能穿孔Riemann曲面的紧化得到的。6d N=(2,0)理论是由m理论构造的非拉格朗日理论。黎曼曲面的穿孔可以编码有关S类理论风味对称性的数据。由此产生的S类理论通常是非拉格朗日的,然而,由于N=2超对称,低能物理可以用Seiberg-Witten方法来描述,在这种方法中,系统变得代数可积。在S类理论中,出现的具体可积系统是阿希钦系统。希钦系统被理解为定义在同一个曼曲面上的希格斯束,它承认希钦方程的解。通过这种方法,低能物理可以被编码到紧化所用的黎曼表面上。数学结构的一个关键性质是可能希格斯束的模空间具有自然的超凯勒结构。从强耦合的N=4超级Yang-Mills的角度出发,通过计算特定最小曲面的面积来获得振幅,该曲面是特定零轮廓在AdS边界上的边界。最小化问题得到sinh-Gordon可积系统,这是Hitchen系统的一种特殊实现。该面积可以用求解热力学Bethe Anzats (TBA)方程的y系函数来表示。当人们试图在超kahlermoduli空间上构造坐标时,这些TBA方程更普遍地出现在希格斯束构造中。求解y系的函数,更一般地说,是模空间上的坐标,具有簇变结构。该项目旨在尝试在这两种结构之间建立某种词典,并进一步发展它们的研究。此外,由于模空间的超kahler性质,有希望尝试和应用扭转方法并获得不同的视角。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
水稻茎秆粗度和穗粒数多效性基因STRONG1的调控网络与作用机制分析
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Light-spin interconversion in heavy metals with strong spin orbit coupling
具有强自旋轨道耦合的重金属中的轻自旋互变
- 批准号:
22KJ0496 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Conference: Strong Coupling with Organic Molecules (SCOM-23)
会议:与有机分子的强耦合(SCOM-23)
- 批准号:
2327457 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Exploration of Emergent Functional Properties in Topological Semimetals with Strong Magnetic Coupling
强磁耦合拓扑半金属的涌现功能特性探索
- 批准号:
22KJ0212 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Excellence in Research: Tunable hybrid photonic materials at strong coherent coupling
卓越的研究:强相干耦合的可调谐混合光子材料
- 批准号:
2301350 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Postdoctoral Fellowship: MPS-Ascend: Increasing the Rate of Singlet Fission through Strong Coupling
博士后奖学金:MPS-Ascend:通过强耦合提高单线态裂变速率
- 批准号:
2316063 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fellowship Award
Construction of an innovative photoreaction fields that possess quantum coherent strong coupling and study of its fundamental principle
具有量子相干强耦合的创新光反应场的构建及其基本原理研究
- 批准号:
23H05464 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (S)
Research on the control of photon-magnon coupling state by strong gate electric field
强栅极电场控制光子-磁振子耦合态的研究
- 批准号:
22KJ1956 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of a novel photocathode under strong coupling conditions for carbon dioxide reduction
开发强耦合条件下用于二氧化碳还原的新型光电阴极
- 批准号:
23K04902 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exploration of the strong coupling regime between the 3D cavity and super conducting quantum bits for low-mass wave-like dark matter searches
探索 3D 腔和超导量子比特之间的强耦合机制,用于低质量波状暗物质搜索
- 批准号:
23K13093 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
SCOLED: Strong-Coupling-Enhanced Nanoparticle Array Organic Light-Emitting Diode
SCOLED:强耦合增强纳米粒子阵列有机发光二极管
- 批准号:
10063313 - 财政年份:2023
- 资助金额:
-- - 项目类别:
EU-Funded














{{item.name}}会员




