Investigation of Transition-Metal Catalysed C-H Activation Using Quantum Chemistry and Machine Learning
利用量子化学和机器学习研究过渡金属催化的 C-H 活化
基本信息
- 批准号:2759938
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Direct functionalisation of C-H bonds to form new C-C bonds (or C-N, C-O etc.) has received significant interest in the past two decades, particularly in drug discovery. This broad class of reactions is attractive since it enables shorter and more efficient syntheses, avoiding the use of halide/amine pre-functionalised molecules prior to performing their coupling. C-H activation reactions usually require the use of a transition metal (TM) catalyst (e.g., Pd, Pt). The reaction is suggested to proceed via metal insertion at the C-H bond, although alternative mechanisms are possible. However, even with TM catalysts, C-H activation requires harsh reaction conditions due to its high bond dissociation energy, which reduces tolerance of sensitive functional groups. Additionally, there is often poor regio- and stereo-selectivity. The aim of this project is twofold, the first is the automation of reaction path generation for these reactions with quantum chemical methods. The second goal is the prediction of reaction products for given reactants via machine learning (ML) approaches. Computational studies can help elucidate the mechanism of these reactions and thereby allow improving their reactivity and selectivity. Most of the previous work has been done via manual exploration of potential energy surfaces to find transition states (TS), which is time consuming and requires expert users. Automating such analyses would reduce the resources spent on modelling and increase their impact on synthetic development. Efforts to automate the study of this type of reactions are only recently being reported with model systems. This project aims to leverage the utility for C-H activation reactions. We will explore the use semi-empirical (SE) methods to obtain TS guesses and then augment that with ML-based correction to obtain a geometry close to the DFT-optimised TS structure. This combined SE-ML approach has been applied to the prediction of solvation energy, heats of formation etc., and shown to converge faster and require less training data than pure ML models. We will also aim to extend the generalisability of this approach to predict C-H activation with any metal catalyst (i.e., Ru, Fe etc.). The second avenue to explore will be the use of ML methods to predict the reaction products, especially the regio-/stereo-selectivity of C-H activation reaction, given the reactants. Here we will employ the IBM Rxn platform as a starting point, which has been shown to achieve 90% accuracy on the first prediction against the known reaction outcome. This ML approach, introduced by Schwaller et al, consists of a neural network language-transformer model which "translates" SMILES strings of reactants into the product SMILES. Even though ML models to predict general reactions are available, their efficacy for C-H activation reactions has not been extensively tested. We intend to investigate whether language-transformer based ML models can predict C-H activation regioselectivity and stereoselectivity. We will also implement 3D structure-based ML models (e.g., based on molecular electrostatic potential) and test whether it is more successful in predicting selectivity. This project falls within the EPSRC research area "computational and theoretical chemistry". But it also touches upon areas of reaction mechanism, medicinal chemistry, transition metal catalysis, DFT and machine learning. This project aligns with the goals of EPSRC in that area, including collaboration with pharmaceutical sector and software development. The latter will be beneficial to improving computational workflows and the study of catalytic mechanisms which are relevant in the broader scientific context. We are very happy to have AstraZeneca as our industrial collaborators. They assist by suggesting which routes of inquiry might align better with the synthetic and drug discovery goals of pharmaceutical industries.
C-H键的直接功能化以形成新的C-C键(或C-N、C-O等)在过去二十年中引起了极大的兴趣,特别是在药物发现方面。这类反应很有吸引力,因为它可以实现更短、更有效的合成,避免在进行偶联之前使用卤化物/胺预官能化分子。 C-H 活化反应通常需要使用过渡金属 (TM) 催化剂(例如 Pd、Pt)。尽管替代机制是可能的,但建议该反应通过 C-H 键处的金属插入进行。然而,即使使用TM催化剂,由于其高键解离能,C-H活化也需要苛刻的反应条件,这降低了敏感官能团的耐受性。此外,区域选择性和立体选择性通常较差。该项目的目标是双重的,第一个是利用量子化学方法自动生成这些反应的反应路径。第二个目标是通过机器学习 (ML) 方法预测给定反应物的反应产物。计算研究可以帮助阐明这些反应的机制,从而提高它们的反应性和选择性。之前的大部分工作都是通过手动探索势能面来寻找过渡态(TS)来完成的,这非常耗时并且需要专家用户。自动化此类分析将减少建模所花费的资源,并增加其对综合开发的影响。最近才通过模型系统报道了对此类反应进行自动化研究的努力。该项目旨在利用 C-H 活化反应的实用性。我们将探索使用半经验 (SE) 方法来获得 TS 猜测,然后通过基于 ML 的校正对其进行增强,以获得接近 DFT 优化的 TS 结构的几何形状。这种组合的 SE-ML 方法已应用于溶剂化能、生成热等的预测,并且与纯 ML 模型相比,收敛速度更快,需要的训练数据更少。我们还将致力于扩展这种方法的普适性,以预测任何金属催化剂(即 Ru、Fe 等)的 C-H 活化。第二个探索的途径是使用机器学习方法来预测反应产物,特别是给定反应物的 C-H 活化反应的区域/立体选择性。在这里,我们将采用 IBM Rxn 平台作为起点,该平台已被证明可以在针对已知反应结果的首次预测中实现 90% 的准确率。 Schwaller 等人提出的这种机器学习方法由神经网络语言转换器模型组成,该模型将 SMILES 反应物字符串“翻译”为产品 SMILES。尽管可以使用 ML 模型来预测一般反应,但它们对 C-H 激活反应的功效尚未得到广泛测试。我们打算研究基于语言转换器的 ML 模型是否可以预测 C-H 激活区域选择性和立体选择性。我们还将实现基于 3D 结构的 ML 模型(例如,基于分子静电势)并测试它在预测选择性方面是否更成功。该项目属于 EPSRC 研究领域“计算和理论化学”。但它也涉及反应机理、药物化学、过渡金属催化、DFT 和机器学习等领域。该项目符合 EPSRC 在该领域的目标,包括与制药行业和软件开发的合作。后者将有利于改进计算工作流程和与更广泛的科学背景相关的催化机制的研究。我们很高兴阿斯利康成为我们的工业合作伙伴。他们通过建议哪些调查途径可能更好地符合制药行业的合成和药物发现目标来提供帮助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
以果蝇为模式研究纤毛过渡纤维(Transition fibers)的形成和功能
- 批准号:31871357
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Spectroscopic Investigation of Transition-Metal Complexes: Pinpointing Favourable Ligand Design Strategies for Sustainable Photo-Sensitizers
过渡金属配合物的光谱研究:确定可持续光敏剂的有利配体设计策略
- 批准号:
577718-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
Investigation of spin torque in transition metal-rare earth metal ferrimagnet based on 2 component spin torque term
基于二分量自旋扭矩项的过渡金属-稀土金属铁磁体自旋扭矩研究
- 批准号:
21K14487 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Investigation of N-chiral Ligands for development of 3d transition metal catalysts
研究用于开发 3d 过渡金属催化剂的 N-手性配体
- 批准号:
20K05493 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation of quenching process by hole transfer for phosphors doped with rare earth and transition metal ions
稀土和过渡金属离子掺杂荧光粉空穴传输猝灭过程的研究
- 批准号:
20H02438 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Investigation into mechanism of functional expression in magnetic materials with transition-metal substitution
过渡金属取代磁性材料功能表达机制研究
- 批准号:
20K05135 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation of metal-insulator transition and negative thermal expansion in layers ruthenates.
层状钌酸盐中金属-绝缘体转变和负热膨胀的研究。
- 批准号:
19F19057 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
RII-Track 4: Investigation into Structure-Magnetism Correlations in 4d/5d Transition Metal Halides using Combined X-ray and Neutron Diffraction Techniques
RII-Track 4:使用 X 射线和中子衍射组合技术研究 4d/5d 过渡金属卤化物中的结构-磁性相关性
- 批准号:
1832967 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Investigation of the active site on transition-metal oxide for the oxygen reduction reaction
过渡金属氧化物氧还原反应活性位点的研究
- 批准号:
18K14328 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Investigation of magnesium-transition metal borates for battery applications.
研究用于电池应用的镁过渡金属硼酸盐。
- 批准号:
2124516 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Studentship
Numerical Investigation of the Thermo-Optical Switching Mechanism of Metal-Insulator Transition Mate
金属-绝缘体过渡材料热光转换机理的数值研究
- 批准号:
523862-2018 - 财政年份:2018
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards














{{item.name}}会员




