An Exact Test for Overdispersion in Screening Mammography Assessments
筛查乳腺 X 光检查评估中过度分散的精确测试
基本信息
- 批准号:7140775
- 负责人:
- 金额:$ 8.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-08-01 至 2008-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): Early detection tests for breast cancer save many thousands of lives each year, and many more lives could be saved if even more women and their health care providers took advantage of these tests. Early detection of breast cancer depends in part on the accuracy of screening mammogram interpretation. The accuracy of human interpreters in detecting the presence or absence of breast cancer can be evaluated by estimating indices like sensitivity and specificity. Efficient and precise estimation of both of these accuracy parameters have important consequences for public health planning and for patients. When multiple observations and statistical modeling approaches are employed for assessing the accuracy indices, the standard assumption of the binomial distribution for the data needs confirmation. Several tests based on large sample theory are widely available. However, the data generated in biomedical studies frequently involve small samples, and thus the accuracy of the asymptotic approach for analyzing such data is in question. The goal of this research proposal is to develop a method of exact testing for overdispersion in small samples. The project will involve both theoretical and empirical work, drawing on existing data sources and collaborative opportunities provided through the investigator's collaboration at H. Lee Moffitt Cancer Center & Research Institute. The specific aims for this proposal are described as: Specific Aim 1: Develop an exact test for overdispersion; Specific Aim 2: Develop a computational algorithm and release a publicly available implementation; Specific Aim 3: Apply and evaluate the proposed method using a real life dataset.
乳腺癌早期检测每年挽救成千上万人的生命,如果更多的妇女及其医疗保健提供者利用这些检测,可以挽救更多的生命。乳腺癌的早期发现部分取决于筛查乳房X线照片解释的准确性。人类口译员检测乳腺癌存在或不存在的准确性可以通过估计敏感性和特异性等指标来评估。这两个准确度参数的有效和精确的估计对公共卫生规划和患者有重要的影响。当采用多重观测和统计建模方法评估准确性指标时,需要确认数据的二项分布的标准假设。基于大样本理论的几个测试是广泛可用的。然而,在生物医学研究中产生的数据往往涉及小样本,因此,分析这些数据的渐近方法的准确性是有问题的。本研究的目的是开发一种小样本过度分散的精确检验方法。该项目将涉及理论和实证工作,利用现有的数据来源和合作机会,通过研究者的合作在H。李莫菲特癌症中心和研究所。该提案的具体目标如下:具体目标1:开发过度分散的精确测试;具体目标2:开发计算算法并发布公开的实现;具体目标3:使用真实的数据集应用和评估所提出的方法。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An exact test for detecting inconsistency in readers interpretation over time in screening mammograms.
一项精确测试,用于检测筛查乳房 X 光检查中读者解读随时间的不一致情况。
- DOI:10.1002/bimj.200610314
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Lee,Ji-Hyun;Eschrich,Steven;Beam,Craig
- 通讯作者:Beam,Craig
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JI-HYUN LEE其他文献
JI-HYUN LEE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JI-HYUN LEE', 18)}}的其他基金
Biostatistics and Quantitative Sciences Shared Resource
生物统计学和定量科学共享资源
- 批准号:
10625765 - 财政年份:2023
- 资助金额:
$ 8.15万 - 项目类别:
Bioinformatics, Statistical and Methodological Shared Resources Core
生物信息学、统计和方法共享资源核心
- 批准号:
10762124 - 财政年份:2018
- 资助金额:
$ 8.15万 - 项目类别:
相似海外基金
Deciphering electrophysiological Alzheimer's Disease biomarkers for early diagnosis using interpretable deep learning
使用可解释的深度学习破译电生理阿尔茨海默病生物标志物以进行早期诊断
- 批准号:
24K18602 - 财政年份:2024
- 资助金额:
$ 8.15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Biomarker-Based Platform for Early Diagnosis of Chronic Liver Disease to Enable Personalized Therapy (LIVERAIM)
基于生物标志物的慢性肝病早期诊断平台,以实现个性化治疗(LIVERAIM)
- 批准号:
10087822 - 财政年份:2024
- 资助金额:
$ 8.15万 - 项目类别:
EU-Funded
Upconversion nanoparticle-based optical biosensor for early diagnosis of stroke
基于上转换纳米粒子的光学生物传感器用于中风的早期诊断
- 批准号:
MR/Y503460/1 - 财政年份:2024
- 资助金额:
$ 8.15万 - 项目类别:
Research Grant
New strategies to isolate bacteria for early diagnosis of sepsis
分离细菌用于脓毒症早期诊断的新策略
- 批准号:
2897688 - 财政年份:2023
- 资助金额:
$ 8.15万 - 项目类别:
Studentship
Imaging Protein Aggregates for Early Diagnosis and Monitoring of Parkinson's Disease
蛋白质聚集体成像用于帕金森病的早期诊断和监测
- 批准号:
MR/X021874/1 - 财政年份:2023
- 资助金额:
$ 8.15万 - 项目类别:
Research Grant
Implantable Optoelectronic Devices for Unified Early Diagnosis and Treatment: Toward Creation of Optoelectronic Pharmacolog
用于统一早期诊断和治疗的植入式光电装置:迈向光电药理学的创建
- 批准号:
23H05450 - 财政年份:2023
- 资助金额:
$ 8.15万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
A Novel Framework for Sensitive and Reliable Early Diagnosis, Topographic Mapping, and Stiffness Classification of Colorectal Cancer Polyps
一种用于结直肠癌息肉敏感且可靠的早期诊断、地形测绘和硬度分类的新框架
- 批准号:
10742476 - 财政年份:2023
- 资助金额:
$ 8.15万 - 项目类别:
Liquid Biopsy using Multi-Nucleic Acid for the early diagnosis of PDAC
使用多核酸液体活检进行 PDAC 早期诊断
- 批准号:
23K06759 - 财政年份:2023
- 资助金额:
$ 8.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Movement pattern analysis of fasciculations detected by ultrasound images for the establishment of ultra-early diagnosis of amyotrophic lateral sclerosis
超声图像肌束颤动运动模式分析为肌萎缩侧索硬化症超早期诊断建立
- 批准号:
23K14767 - 财政年份:2023
- 资助金额:
$ 8.15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Dvelopment of a comprehensive cervical cancer early diagnosis system through community collaboration by promoting digital transformation in the era of women's active roles.
通过社区合作,开发全面的宫颈癌早期诊断系统,推动女性积极作用时代的数字化转型。
- 批准号:
23H03236 - 财政年份:2023
- 资助金额:
$ 8.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




