Caprock -Reservoir Integrity of Subsurface Storage of Hydrogen (CRISTHY)

盖层 - 地下储氢储层完整性 (CRISTHY)

基本信息

  • 批准号:
    2857249
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Underground hydrogen storage (UHS) has been promoted as one of the feasible solutions to support the global hydrogen economy. In addition to the operational challenges in hydrogen storage, addressing the fundamental physical-chemical processes involved in UHS is crucial. Although there are similarities between UHS and natural gas, compressed air, and CO2 subsurface storage, there are unique differences due to the physical and chemical properties of hydrogen. To ensure the safe and efficient storage of hydrogen, the following processes need to be investigated Hydrogen does not dissolve in water, making the buoyancy effects much stronger than CO2 and natural gas.The significant difference in density between hydrogen and brine causes hydrogen to migrate upwards quickly and separate into different phases. However, hydrogen can also spread laterally over a wider area due to its low viscosity. As the flow moves away from where it was injected, the fluid velocity decreases, causing the front of the flow to becomedominated by capillary forces. During the hydrogen production stage, capillary trapping may occur, which can cause the brine to leave behind hydrogen due to the start of the imbibition process.Likewise, the presence of reservoir heterogeneity (Non uniform distribution of rock properties) makes dynamic properties like relative permeability and capillary pressure very important.In order to minimise the hydrogen loss due to the different flow complexity mentioned above, we will utilise two-phase flow simulation methods. This will include the implementation of simplified models to understand the long-term impact of UHS on reservoir caprock integrity. In addition, the complicated two-phase flow simulation method will be used to study the effect of reservoir heterogeneity and fluid properties on hydrogen injectivity and productivity. Numerical models will also be used to verify the validity of the measured hydrogen flow properties, such as relative permeability.The project's First yearis mainly focused on the flow and transport of hydrogen in aquifers.As hydrogen is much lighter than brine, strong buoyancy forces pushhydrogen to the caprock. This would lead to fast segregation of hydrogen and brine and hydrostatic pressure profile in the vertical direction. Using this assumption, we have utilised a simplified reservoir simulation method that reduces the number of dimensionsby one. Therefore, we can investigate the long-term effect of UHS and other activities, such as microbial and geochemical.Relative permeability is a contributing factor in hydrogen flow, so its accurate measurement is necessary. In addition to relative permeability, gas viscosityis a defining parameter in hydrogen mobilityin the presence of brine. As hydrogen mobility is much higher than water, there is ahigh probability ofviscous fingering effect at labscale measurements.We have conducted lab-scaled simulations to see whether the reported relative permeability in the literature is reliable on the field scale. Hydrogen may be responsible for the growth of hydrogen consuming microbes in the subsurface.Microbial activity inside depleted or brine reservoirs can pose a threat to hydrogen security and also reservoir-caprock integrity. There are a variety of microorganisms that consume hydrogen, including methanogens, sulfate reducers, homoacetogenic bacteria, and iron (III)reducers. The injection pressure-temperature condition, pH value of brine, and substrate supply are essential factors affecting hydrogen consumption. In addition to hydrogen loss due to microbial activity, microorganisms can also plug the pores of the reservoir, leading to a decrease in reservoir injectivity/productivity. In order to gain a comprehensive understanding of how microbes consume hydrogen at a reservoir level, it is necessary to integrate flow models with microbial reaction models and conduct experimental tests or employ porescale modelling
地下储氢(UHS)已被推广为支持全球氢经济的可行解决方案之一。除了储氢的操作挑战外,解决UHS中涉及的基本物理化学过程也至关重要。虽然UHS与天然气、压缩空气和CO2地下储存之间存在相似之处,但由于氢的物理和化学性质,它们之间存在独特的差异。为了确保氢气的安全和有效储存,需要研究以下过程氢气不溶于水,浮力效应远强于二氧化碳和天然气。氢气和盐水之间的密度差异导致氢气快速向上迁移并分离成不同的相态。然而,由于其低粘度,氢气也可以横向扩散到更宽的区域。随着流体远离其被注入的位置,流体速度降低,导致流体的前部被毛细力所包围。在制氢阶段期间,可能发生毛细管捕获,这可能导致盐水由于开始渗吸过程而留下氢。(岩石性质的不均匀分布)使得相对渗透率和毛细管压力等动态性质变得非常重要。为了最小化由于上述不同流动复杂性而导致的氢损失,我们将利用两相流模拟方法。这将包括实施简化模型,以了解UHS对储层盖层完整性的长期影响。此外,还将采用复杂的两相流模拟方法,研究储层非均质性和流体性质对注氢能力和产能的影响。数值模型也将被用来验证测量的氢流动特性的有效性,例如相对渗透率。该项目的第一年主要关注氢在含水层中的流动和运输。由于氢比盐水轻得多,强大的浮力将氢推向盖层。这将导致氢气和盐水的快速分离以及垂直方向上的静水压力分布。使用这个假设,我们利用了一种简化的油藏模拟方法,将维度减少了一个。因此,我们可以研究UHS和其他活动(如微生物和地球化学)的长期影响。相对渗透率是氢流量的一个影响因素,因此其准确测量是必要的。除了相对渗透率外,气体粘度也是盐水中氢迁移率的一个决定性参数。由于氢的迁移率比水高得多,在实验室规模的测量中,粘性指进效应的可能性很高。我们进行了实验室规模的模拟,看看文献中报道的相对渗透率在现场规模上是否可靠。氢可能是地下耗氢微生物生长的主要原因,微生物在衰竭或盐水储层中的活动会对氢安全和储层-盖层的完整性构成威胁。存在多种消耗氢的微生物,包括产甲烷菌、硫酸盐还原菌、同型产乙酸菌和铁(III)还原菌。注入压力-温度条件、盐水pH值和底物供给是影响氢耗的重要因素。除了由于微生物活动引起的氢损失之外,微生物还可以堵塞储层的孔隙,导致储层注入能力/生产能力的降低。为了全面了解微生物在储层水平上如何消耗氢,有必要将流动模型与微生物反应模型结合起来,并进行实验测试或采用孔隙尺度模型

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似海外基金

Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343607
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
  • 批准号:
    2403559
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343606
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
  • 批准号:
    2403560
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: The Human Gut as an Untapped Reservoir for Bacteria and Enzymes that Degrade Lignin, a Potential Sustainable Source for Critical Chemicals
职业:人类肠道是降解木质素的细菌和酶的未开发储库,木质素是关键化学品的潜在可持续来源
  • 批准号:
    2339225
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Quantum reservoir computing for efficient signal processing
用于高效信号处理的量子存储计算
  • 批准号:
    10108296
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
SBIR Phase I: Oscillator Processing Unit - Physical Reservoir Computing on the Edge
SBIR 第一阶段:振荡器处理单元 - 边缘物理油藏计算
  • 批准号:
    2335448
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Exploring physical reservoir computing mechanisms by ultra-thin Si nanoresonators for enhancing computational reliability
通过超薄硅纳米谐振器探索物理储层计算机制以提高计算可靠性
  • 批准号:
    24K08219
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: CAS-Climate: Forecast-informed Flexible Reservoir System Modeling Enabled by Artificial Intelligence Algorithms Using Subseasonal-to-Seasonal Hydroclimatological Forecasts
职业:CAS-气候:利用次季节到季节水文气候预测的人工智能算法实现基于预测的灵活水库系统建模
  • 批准号:
    2236926
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Elucidation of a formation history of a magma reservoir from plutonic and contact metamorphic rocks
阐明深成岩和接触变质岩岩浆库的形成历史
  • 批准号:
    23K19076
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了