Quantitative Measurements and Modeling of the Mitotic Checkpoint
有丝分裂检查点的定量测量和建模
基本信息
- 批准号:7371808
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-28 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:AnaphaseAneuploidyBRCA1 geneBiochemicalBiologicalCancerousCell Cycle KineticsCell divisionCellsChromosome SegregationChromosomesComplexComputer SimulationCongenital AbnormalityCyclin BDataDefectDiffusionDiseaseDisruptionEmployee StrikesEukaryotic CellFluorescenceFoundationsGenerationsGenesGenetic MaterialsGenomeGenome StabilityGrowth and Development functionHandHousingHumanHuman Cell LineKineticsKinetochoresLifeLinkMalignant NeoplasmsMarriageMeasurementMeasuresMediatingMetaphaseMethodsMicroscopicMicroscopyMitosisMitoticMitotic CheckpointMitotic spindleModelingMolecularMutateNumbersOutcomePathway interactionsPhotobleachingPlayProcessProductionProtein DynamicsProteinsProteomicsRNA InterferenceRateReactionResolutionRoleSignal PathwaySignal TransductionSimulateSolidSpectrum AnalysisTP53 geneTechniquesTestingTherapeutic InterventionTimeTreatment Protocolsbasechromosome losshuman PTTG1 proteininhibitor/antagonistinstrumentinstrumentationpreventresearch studyresponsesegregationtumorubiquitin-protein ligase
项目摘要
DESCRIPTION (provided by applicant): Cell division is an essential feature of growth, development and renewal. Each time a cell divides an exact copy of the genome must be made and each replicated chromosome equally distributed to the progeny cells. If chromosomes are unequally distributed, the cell is said to be aneuploid - the state of having the incorrect number of chromosomes. Aneuploidy is a pathological hallmark of cancerous cells and underlies a variety of birth defects. The cellular machinery to prevent aneuploidy is called the mitotic checkpoint and acts to prevent distribution of the chromosomes until they are attached to the mitotic spindle. Unlike genes that cause hereditable cancers (e.g. Rb, BRCA1, p53 etc.), very few mitotic checkpoint genes have been found mutated in disease. However, the overwhelming evidence of aneuploidy in cancer and birth defects strongly implicates a deficiency in the mitotic checkpoint machinery. Recent observations are now converging on a model whereby genes, particularly in the kinetochore-mediated Mad2 signaling pathway, are not necessarily mutated directly, but that the expression levels of genes and thereby reduced activity of the mitotic checkpoint can result in aneuploidy. Here we propose to quantitatively measure the kinetics of kinetochore signaling in living cells and house these measurements in a predictive in silico model of checkpoint signaling. These measurements are made through the marriage of modern molecular biological techniques with cutting- edge microscopy and spectroscopy-based biophysical instrumentation. By determining the array of signals produced by unattached kinetochores to prevent untimely chromosome segregation and the rates at which these are made we will be able to develop an in silico model of the process. The model will allow us to test the quantitative perturbations of these genes in the signaling pathway. This will permit the generation of new hypotheses and experiments regarding the basic mechanisms of the mitotic checkpoint and begin to understand how subtle defects in this process may underlie disease.
Quantitative measurements and in silico modeling will provide a solid foundation upon which to study the checkpoint response of varied cell lines and human tumors. Our sensitivity analyses can identify those proteins in this pathway that would be most sensitive to therapeutic intervention. Ultimately, such models may provide predictive capacity to choose chemotherapeutic/anti-mitotic treatment regimen based on the proteomic signature of a human tumor.
描述(申请人提供):细胞分裂是生长、发育和更新的基本特征。每次细胞分裂时,必须制作基因组的精确副本,并将每个复制的染色体平均分配给后代细胞。如果染色体分布不均,细胞就被称为非整倍体--染色体数目不正确的状态。非整倍体是癌细胞的病理标志,是各种出生缺陷的基础。防止非整倍体的细胞机制被称为有丝分裂检查点,它阻止染色体的分布,直到它们附着在有丝分裂纺锤体上。与导致可遗传癌症的基因(如Rb、BRCA1、P53等)不同,很少有有丝分裂检查点基因在疾病中被发现突变。然而,癌症和出生缺陷中非整倍体的压倒性证据有力地暗示了有丝分裂检查点机制的缺陷。最近的观察结果正在趋同于一种模型,在该模型中,基因,特别是在动粒介导的MAD2信号通路中,不一定直接突变,但基因的表达水平以及由此降低的有丝分裂检查点的活性可能导致非整倍体。在这里,我们建议定量测量活细胞中动粒信号的动力学,并将这些测量置于检查点信号的预测电子模型中。这些测量是通过现代分子生物学技术与尖端显微镜和基于光谱学的生物物理仪器相结合进行的。通过确定由独立的动点产生的信号阵列来防止不及时的染色体分离,以及这些信号产生的速率,我们将能够开发这一过程的计算机模型。该模型将允许我们测试这些基因在信号通路中的定量扰动。这将允许产生关于有丝分裂检查点基本机制的新假设和实验,并开始了解这一过程中的细微缺陷可能是疾病的基础。
定量测量和电子计算机建模将为研究不同细胞系和人类肿瘤的检查点反应提供坚实的基础。我们的敏感性分析可以确定这一途径中对治疗干预最敏感的蛋白质。最终,这样的模型可能提供预测能力,根据人类肿瘤的蛋白质组特征选择化疗/抗有丝分裂治疗方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JAGESH V SHAH其他文献
JAGESH V SHAH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JAGESH V SHAH', 18)}}的其他基金
MOLECULAR MECHANISMS CONTROLLING THE MITOTIC CHECKPOINT
控制有丝分裂检查点的分子机制
- 批准号:
8171390 - 财政年份:2010
- 资助金额:
$ 35万 - 项目类别:
Quantitative Measurements and Modeling of the Mitotic Checkpoint
有丝分裂检查点的定量测量和建模
- 批准号:
8055637 - 财政年份:2010
- 资助金额:
$ 35万 - 项目类别:
IDENTIFICATION OF MAMMALIAN INTRAFLAGELLAR TRANSPORT COMPLEXES FOR PRIMARY CILIA
哺乳动物初级纤毛鞭毛内运输复合物的鉴定
- 批准号:
7957785 - 财政年份:2009
- 资助金额:
$ 35万 - 项目类别:
MOLECULAR MECHANISMS CONTROLLING THE MITOTIC CHECKPOINT
控制有丝分裂检查点的分子机制
- 批准号:
7957791 - 财政年份:2009
- 资助金额:
$ 35万 - 项目类别:
IDENTIFICATION OF MAMMALIAN INTRAFLAGELLAR TRANSPORT COMPLEXES FOR PRIMARY CILIA
哺乳动物初级纤毛鞭毛内运输复合物的鉴定
- 批准号:
7723702 - 财政年份:2008
- 资助金额:
$ 35万 - 项目类别:
MOLECULAR MECHANISMS CONTROLLING THE MITOTIC CHECKPOINT
控制有丝分裂检查点的分子机制
- 批准号:
7723615 - 财政年份:2008
- 资助金额:
$ 35万 - 项目类别:
Microfluidic Platform for Genetic Guidance of Stem Cell Differentiation
用于干细胞分化遗传指导的微流控平台
- 批准号:
7466609 - 财政年份:2007
- 资助金额:
$ 35万 - 项目类别:
Quantitative Measurements and Modeling of the Mitotic Checkpoint
有丝分裂检查点的定量测量和建模
- 批准号:
7672313 - 财政年份:2007
- 资助金额:
$ 35万 - 项目类别:
Microfluidic Platform for Genetic Guidance of Stem Cell Differentiation
用于干细胞分化遗传指导的微流控平台
- 批准号:
7491497 - 财政年份:2007
- 资助金额:
$ 35万 - 项目类别:
相似海外基金
Elucidating the effects of extra chromosome elimination in mosaic aneuploidy syndromes: Pallister-Killian syndrome as a model
阐明额外染色体消除对嵌合非整倍体综合征的影响:以 Pallister-Killian 综合征为模型
- 批准号:
10887038 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Characterization of aneuploidy, cell fate and mosaicism in early development
早期发育中非整倍性、细胞命运和嵌合体的表征
- 批准号:
10877239 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
The impact of aneuploidy on early human development
非整倍体对人类早期发育的影响
- 批准号:
MR/X007979/1 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Research Grant
Understanding how aneuploidy disrupts quiescence in the model eukaryote Saccharomyces cerevisiae
了解非整倍体如何破坏模型真核生物酿酒酵母的静止状态
- 批准号:
10735074 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Preventing Age-Associated Oocyte Aneuploidy: Mechanisms Behind the Drosophila melanogaster Centromere Effect
预防与年龄相关的卵母细胞非整倍性:果蝇着丝粒效应背后的机制
- 批准号:
10538074 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Functional evaluation of kinesin gene variants associated with female subfertility and egg aneuploidy.
与女性生育力低下和卵子非整倍性相关的驱动蛋白基因变异的功能评估。
- 批准号:
10537275 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Using CRISPR screening to uncover aneuploidy-specific genetic dependencies
使用 CRISPR 筛选揭示非整倍体特异性遗传依赖性
- 批准号:
10661533 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Comparative Analysis of Aneuploidy and Cellular Fragmentation Dynamics in Mammalian Embryos
哺乳动物胚胎非整倍性和细胞破碎动力学的比较分析
- 批准号:
10366610 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
FASEB SRC: The Consequences of Aneuploidy: Honoring the Contributions of Angelika Amon
FASEB SRC:非整倍体的后果:纪念 Angelika Amon 的贡献
- 批准号:
10467260 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:














{{item.name}}会员




