Nonheme Diiron Centers and the Biological Oxidation of Hydrocarbons
非血红素二铁中心和碳氢化合物的生物氧化
基本信息
- 批准号:7495933
- 负责人:
- 金额:$ 2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1983
- 资助国家:美国
- 起止时间:1983-01-01 至 2010-08-31
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAddressAlcoholsAlkanesAlkenesAminesAmino AcidsAreaBindingBiologicalBiomimeticsBioremediationsChemistryChlorinated HydrocarbonsComplexCouplingDecontaminationDevelopmentDioxygenElectron TransportElectronsEnzymesFamily memberFreezingFutureGenetic StructuresGoalsHemeHomologous ProteinHuman ResourcesHydrocarbonsHydrogen PeroxideHydroxylationIndividualInvestigationIsotopesKineticsKnowledgeLearningMammalsMeasuresMethaneMethane hydroxylaseMethanolMethodologyMethodsMixed Function OxygenasesModelingMolecularMono-SMovementNADHNMR SpectroscopyNatureOilsOpticsOrganismOxidation-ReductionOxidoreductaseOxygenasesPathway interactionsPeroxidesPhenol 2-monooxygenasePlantsPreparationProcessPropertyProteinsProtonsPublic HealthQuantum MechanicsRangeReactionResearchResearch ActivityResearch PersonnelRestRoentgen RaysRoleRouteShunt DeviceSiteSpectrum AnalysisStructureSulfidesSystemTechniquesTestingWaterWorkX ray diffraction analysisX-Ray CrystallographyX-Ray Diffractionabsorptionanalogcarboxylatecatalystchemical propertydesigngenetic regulatory proteingreenhouse gasesground waterinsightmacromoleculemolecular mechanicsmutantnovelnovel strategiesoxidationplanetary Atmospherepreventprogramsprotein structuresmall moleculestoichiometrytoluene 2-xylene monooxygenasevector
项目摘要
The long-term goal of this research is to advance our understanding of multicomponent mono-
oxygenases that activate dioxygen for the selective hydroxylation of hydrocarbons. These
remarkable enzyme systems,which typically consist of hydroxylase, reductase, and regulatory
proteins, consume four substrates - a hydrocarbon, O2,electrons, andprotons - to produce alcohol
and water. The flagship member of the family is soluble methane monooxygenase (sMMO), which
has a carboxylate-bridged non-heme diiron center at the active site of its hydroxylase component
where selective oxidation of methane to methanol is achieved. Similar units that occur in organisms
ranging from plants to mammals activate 62 to perform a variety of related functions. Structures of
the individual component proteins, and of complexes between them, from three bacterial systems,
sMMO, toluene/o-xylene monooxygenase, and phenol hydroxylase,will be investigated by X-ray
crystallography and NMR spectroscopy. 62 activation in native and mutant hydroxylases will be
studied by rapid-mixing and freeze-quench methodologies, including a novel sub-ms technique,
combined with optical absorption, resonance Raman, IR, EPR, EXAFS, and Mb'ssbauer
spectroscopy. Reactions of kinetically isolated intermediates with substrates will be investigated to
reveal mechanisms responsible for stereospecific hydroxylation of alkanes, alkenes, arenes, and
heteroatom-substituted substrates. Activation parameters and kinetic isotope effects will be
determined for comparison with theoretically derived values to test proposed mechanistic pathways.
Electron-transfer and proton-translocation reactions between the reductase or Rieske component
proteins and the hydroxylases will be investigated. Small molecule analogs of the hydroxylase
diiron centers will be prepared and characterized. The structures and properties of intermediates
generated by reacting diiron(ll) model complexes with 02 and their ability to oxidize tethered or
exogenous substrates will be studied. A newly developed preparative route will afford biomimetic
complexes with N-donors syn to the Fe-Fe vector of the carboxylate-bridged dimetallic center. This
project is relevant to public health because bacterial monooxygenases prevent ChU, a greenhouse
gas, from reaching the atmosphere, degrade chlorinated hydrocarbons in ground water, and are
activated for bioremediation of oil spills. Knowledge of the molecular mechanisms of 62 activation
and substrate hydroxylation provided by this research will advance novel strategies for
environmental decontamination and the development of catalysts to convert methane to methanol.
这项研究的长期目标是促进我们对多组分单组分的理解,
活化双氧以使烃类选择性羟基化的加氧酶。这些
值得注意的酶系统,通常由羟化酶、还原酶和调节酶组成,
蛋白质消耗四种底物--碳氢化合物、氧气、电子和质子--产生酒精
和水该家族的旗舰成员是可溶性甲烷单加氧酶(sMMO),
在其羟化酶组分的活性部位具有羧酸根桥接的非血红素二铁中心
其中实现甲烷选择性氧化成甲醇。在生物体中出现的类似单位
从植物到哺乳动物,激活62以执行各种相关功能。结构
来自三种细菌系统的单个组分蛋白质及其之间的复合物,
sMMO、甲苯/邻二甲苯单加氧酶和苯酚羟化酶将通过X射线研究
晶体学和NMR光谱学。62在天然和突变体羟化酶中的活化将是
通过快速混合和冷冻骤冷方法学,包括新的亚质谱技术,
结合光学吸收、共振拉曼、IR、EPR、EXAFS和Mb'ssbauer
谱将研究动力学分离的中间体与底物的反应,
揭示了负责烷烃、烯烃、芳烃的立体定向羟基化的机制,
杂原子取代的底物。活化参数和动力学同位素效应将是
确定用于与理论推导值进行比较,以测试提出的机理途径。
还原酶或Rieske组分之间的电子转移和质子转移反应
将研究蛋白质和羟化酶。羟化酶的小分子类似物
将制备和表征二铁中心。中间体的结构和性质
通过使二铁(II)模型络合物与O2反应而产生,
将研究外源底物。一种新的制备方法将提供仿生
与羧酸根桥联的双金属中心的Fe-Fe载体syn的N-供体配合物。这
该项目与公共卫生有关,因为细菌单加氧酶可以防止温室效应
气体到达大气层后,会降解地下水中的氯化烃,
用于石油泄漏的生物修复。了解62活化的分子机制
该研究提供的底物羟基化将为生物降解提供新的策略,
环境净化和开发将甲烷转化为甲醇的催化剂。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen J. Lippard其他文献
X-ray structure of a dodecamer duplex containing the major cisplatin d(GpG) intrastrand cross-link
- DOI:
10.1016/0162-0134(95)97300-f - 发表时间:
1995-08-01 - 期刊:
- 影响因子:
- 作者:
Patricia M. Takahara;Amy C. Rosenzweig;Christin A. Frederick;Stephen J. Lippard - 通讯作者:
Stephen J. Lippard
Frank Albert Cotton (1930–2007)
弗兰克·艾伯特·科顿(1930 年至 2007 年)
- DOI:
10.1038/446626a - 发表时间:
2007-04-04 - 期刊:
- 影响因子:48.500
- 作者:
Stephen J. Lippard - 通讯作者:
Stephen J. Lippard
High resolution crystal structures of the hydroxylase protein of methane monooxygenase
- DOI:
10.1016/0162-0134(95)97479-a - 发表时间:
1995-08-01 - 期刊:
- 影响因子:
- 作者:
Amy C. Rosenzweig;Pär Nordlund;Stephen J. Lippard;Christin A. Frederick - 通讯作者:
Christin A. Frederick
Conjugués de nanoparticule de polynucléotide polyvalente en tant que véhicules de distribution pour un agent chimiothérapique
多核苷酸多价纳米粒子结合物与化学药物分配载体
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Chad A. Mirkin;David A. Giljohann;W. Daniel;Stephen J. Lippard;Shanta Dhar - 通讯作者:
Shanta Dhar
Structural, mechanistic, and model studies for methane monooxygenase
- DOI:
10.1016/0162-0134(95)97192-s - 发表时间:
1995-08-01 - 期刊:
- 影响因子:
- 作者:
Stephen J. Lippard - 通讯作者:
Stephen J. Lippard
Stephen J. Lippard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen J. Lippard', 18)}}的其他基金
STRUCTURAL STUDIES OF BACTERIAL MULTICOMPONENT MONOOXYGENASES
细菌多组分单加氧酶的结构研究
- 批准号:
8362193 - 财政年份:2011
- 资助金额:
$ 2万 - 项目类别:
INVESTIGATIONS OF CISPLATIN-DNA CROSS-LINKS ON NUCLEOSOME CORE PARTICLES
核小体核心颗粒上顺铂-DNA 交联的研究
- 批准号:
8169250 - 财政年份:2010
- 资助金额:
$ 2万 - 项目类别:
STRUCTURAL STUDIES OF BACTERIAL MULTICOMPONENT MONOOXYGENASES
细菌多组分单加氧酶的结构研究
- 批准号:
8170154 - 财政年份:2010
- 资助金额:
$ 2万 - 项目类别:
STRUCTURAL STUDIES OF MULTICOMPONENT BACTERIAL MONOOXYGENASES
多组分细菌单加氧酶的结构研究
- 批准号:
8169251 - 财政年份:2010
- 资助金额:
$ 2万 - 项目类别:
STRUCTURAL STUDIES OF BACTERIAL MULTICOMPONENT MONOOXYGENASES
细菌多组分单加氧酶的结构研究
- 批准号:
7954158 - 财政年份:2009
- 资助金额:
$ 2万 - 项目类别:
Nonheme Diiron Centers and the Biological Oxidation of Hydrocarbons
非血红素二铁中心和碳氢化合物的生物氧化
- 批准号:
7923548 - 财政年份:2009
- 资助金额:
$ 2万 - 项目类别:
STRUCTURAL STUDIES OF MULTICOMPONENT BACTERIAL MONOOXYGENASES
多组分细菌单加氧酶的结构研究
- 批准号:
7955153 - 财政年份:2009
- 资助金额:
$ 2万 - 项目类别:
STRUCTURAL STUDIES OF BACTERIAL MULTICOMPONENT MONOOXYGENASES
细菌多组分单加氧酶的结构研究
- 批准号:
7954496 - 财政年份:2009
- 资助金额:
$ 2万 - 项目类别:
STRUCTURAL STUDIES OF BACTERIAL MULTICOMPONENT MONOOXYGENASES
细菌多组分单加氧酶的结构研究
- 批准号:
7721732 - 财政年份:2008
- 资助金额:
$ 2万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 2万 - 项目类别:
Research Grant