Health Data Science EPSRC CDT
健康数据科学 EPSRC CDT
基本信息
- 批准号:2873831
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Premature atrial contractions (PACs) are common cardiac arrhythmias which, although usually considered benign, can indicate underlying cardiovascular disease (CVD) and potentially lead to severe outcomes. Currently, there is limited understanding of their severity and clinical implications. Exercise testing can be used to expose less frequent arrhythmias, such as PACs, which might be missed during a standard 10-second resting ECG test. Leveraging the extensive UK Biobank (UKB) dataset [5], I aim to develop and evaluate a machine learning model for detecting PACs during exercise, and to investigate the associations between exercise-induced PACs, major CVDs, and other health conditions. Currently, there are no studies quantifying individual PAC beats in such a large dataset as the UKB exercise cohort (N=95,071). Addressing this gap can facilitate biomedical studies investigating the associations of PAC burdens with cardiovascular and overall health. This knowledge is crucial for improving early diagnosis, risk stratification, and preventive interventions in clinical practice.This project falls within the EPSRC Healthcare Technologies theme. The main aim is to enhance the detection and understanding of PACs and their implications for cardiovascular and overall health. I hypothesise that exercise-induced PACs can be accurately detected using machine learning models and that these PACs are significantly associated with major CVDs and other health conditions. I propose three objectives:1. Development and validation of a machine learning model to detect PACs during exercise using the UKB dataset. The model will be trained and validated using a pre-annotated subset of the exercise ECG cohort (112 participants, 79,113 per-heartbeat labels). Preliminary results using a convolutional neural network show promising performance on the PAC class with precision of 0.81 and recall of 0.87 which will be fine-tuned as part of this study. It will then be tested on an external exercise dataset to ensure its robustness and generalisability, and made available to the wider research community as an open-source tool.2. Investigation of the association between exercise-induced PACs and major CVDs. Using the validated PAC detection model, PAC incidence during exercise in relation to the prevalence of major CVDs within the UK Biobank cohort will be examined. The study will expand on the associative analysis of premature ventricular contractions and CVDs by Duijvenboden et al. which reflects the likely power of the proposed study.3. Exploration of the relationship between exercise-induced PACs and various other health conditions in a hypothesis-free manner. An exploratory analysis using the UK Biobank dataset will be carried out to identify potential associations between PACs during exercise and a wide range of health conditions. This work will follow the hypothesis-free format which is illustrated in the study by Watts et al. This research project will result in an open-source machine learning model specifically designed to detect individual PACs during exercise, a novel approach that addresses a significant gap in current diagnostic capabilities. If time permits, the model could also be adapted for use on resting ECG data. Additionally, the hypothesis-free exploration of PACs' associations with various diseases is an innovative strategy that may uncover previously unknown health implications. The derived phenotypes will be shared with the UK Biobank community in order to promote open research into underexplored arrhythmias. By enhancing the detection and understanding of PACs during exercise, this work will contribute to improved early diagnosis and preventive strategies for cardiovascular and other diseases. Ultimately, this will lead to better patient outcomes and reduced healthcare burdens associated with undiagnosed or poorly managed arrhythmias and related conditions.
房性早搏(PAC)是常见的心律失常,虽然通常被认为是良性的,但可以提示潜在的心血管疾病(CVD),并可能导致严重的后果。目前,对其严重性和临床意义的了解有限。运动测试可以用来暴露不太常见的心律失常,如PAC,在标准的10秒静息心电测试中可能会遗漏这些心律失常。利用广泛的英国生物库(UKB)数据集[5],我的目标是开发和评估一个机器学习模型,用于检测运动中的PAC,并调查运动诱导的PAC、主要心血管疾病和其他健康状况之间的关联。目前,还没有研究在像UKB运动队列这样的大型数据集中量化单个PAC节拍(N=95,071)。解决这一差距可以促进生物医学研究,研究PAC负担与心血管和整体健康的关系。这一知识对于改善临床实践中的早期诊断、风险分层和预防干预至关重要。本项目属于EPSRC医疗保健技术主题。主要目的是加强对PAC的检测和了解及其对心血管和整体健康的影响。我假设,使用机器学习模型可以准确地检测到运动诱导的PAC,并且这些PAC与主要的心血管疾病和其他健康状况显著相关。我提出了三个目标:1.开发和验证一个机器学习模型,以使用UKB数据集检测练习中的PAC。该模型将使用运动心电队列(112名参与者,79,113个每次心跳标签)的预先注释的子集进行训练和验证。使用卷积神经网络的初步结果表明,在PAC类上具有良好的性能,准确率为0.81,召回率为0.87,这将作为本研究的一部分进行微调。然后将在外部练习数据集上进行测试,以确保其健壮性和通用性,并作为开放源码工具提供给更广泛的研究社区。运动性PAC与主要心血管疾病的相关性研究。使用经过验证的PAC检测模型,将检查运动期间PAC发病率与英国Biobank队列中主要心血管疾病患病率的关系。这项研究将扩展Duijvenboden等人对室性早搏和心血管疾病的关联分析。这反映了拟议研究的可能力量。以无假设的方式探讨运动性PAC与其他各种健康状况之间的关系。将使用英国生物库数据集进行探索性分析,以确定运动中的PAC与广泛的健康状况之间的潜在关联。这项工作将遵循瓦茨等人的研究中所说明的无假设的形式。这项研究项目将产生一个开放源码的机器学习模型,专门设计用于在演习期间检测单个PAC,这是一种解决当前诊断能力重大差距的新方法。如果时间允许,该模型也可以被改装用于静息心电数据。此外,无假说地探索PAC与各种疾病的联系是一种创新策略,可能会揭示以前未知的健康影响。衍生的表型将与英国生物库社区共享,以促进对未被探索的心律失常的开放研究。通过加强对运动中PAC的检测和了解,这项工作将有助于改进心血管和其他疾病的早期诊断和预防策略。最终,这将导致更好的患者结果,并减少与未诊断或管理不善的心律失常及相关疾病相关的医疗负担。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A data science framework for transforming electronic health records into real-world evidence
将电子健康记录转化为现实世界证据的数据科学框架
- 批准号:
10664706 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Leveraging Data Science Applications to Improve Children's Environmental Health in Sub-Saharan Africa (DICE)
利用数据科学应用改善撒哈拉以南非洲儿童的环境健康 (DICE)
- 批准号:
10714773 - 财政年份:2023
- 资助金额:
-- - 项目类别:
DSpace: Utilizing Data Science to Predict and Improve Health Outcomes in Pediatric HIV
DSpace:利用数据科学预测和改善儿童艾滋病毒的健康结果
- 批准号:
10749123 - 财政年份:2023
- 资助金额:
-- - 项目类别:
University of South Carolina Big Data Health Science Conference
南卡罗来纳大学大数据健康科学会议
- 批准号:
10751656 - 财政年份:2023
- 资助金额:
-- - 项目类别: