Bayesian Models for Gene Expression with Microarray Data
利用微阵列数据进行基因表达的贝叶斯模型
基本信息
- 批准号:7237216
- 负责人:
- 金额:$ 27.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-06-10 至 2009-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsBase SequenceBayesian MethodBindingBiologicalBooksClassClassificationCluster AnalysisCodeComplexComputer softwareComputing MethodologiesConditionDNADNA Microarray ChipDNA Microarray formatDataData AnalysesData SetDependencyDimensionsDisease regressionFundingGene ClusterGene ExpressionGenesGenetic ModelsGenomicsGoalsGrantHome PageIndividualInternetJointsLearningLiteratureMapsMarkov ChainsMarkov chain Monte Carlo methodologyMeasurementMeasuresMethodsMicroarray AnalysisModelingMonte Carlo MethodNamesNucleic acid sequencingNumbersParentsPatternPerformancePhenotypePliabilityPrincipal InvestigatorProcessPropertyPurposeRangeResearchSample SizeSamplingSiteSpace ModelsStandards of Weights and MeasuresStatistical ModelsTechniquesTimeTissue-Specific Gene ExpressionUncertaintyWeightWorkYangbasecancer diagnosiscomputer based statistical methodsdensityexperiencenetwork modelsnoveloptimismprogramsresponsesimulationteachertooltumor
项目摘要
DESCRIPTION (provided by applicant): This project is concerned with parametric and semiparametric modeling of gene expression data. DNA microarrays and other high-throughput methods for analyzing complex nucleic acid sequences now make it possible to rapidly, efficiently and accurately measure the levels of many genes expressed in a biological sample. The main difficulty with microarray data analysis is that the sample size is very small when compared to the dimension of the problem (the number of genes). The number of genes for a single individual is usually in the thousands and there are few individuals in the data set. We propose several novel parametric Bayesian modeling approaches for gene selection, tumor classification, Bayesian networks, gene clustering and dimension reduction methods. Most of the existing methods are not model-based and thus are unable to address specific questions regarding formal assessment of uncertainties or assessment of the fit of a specific model. Also model-based approaches offer the potential for extension to more complex situations, e.g., probabilistic mixture modeling, handling missing data, etc. We will develop Bayesian hierarchical models for microarray data, which will accommodate several modeling factors flexibly at different levels. In several of the modeling frameworks, we will keep the dimension of the model space unknown to create added flexibility. It is impossible to get analytical answers in these flexible classes of models so simulation based Markov Chain Monte Carlo (MCMC) methodology with dimensional jumping algorithms will be used to derive the estimates (uncertainty distributions) of the unknown parameters.
描述(申请人提供):本项目涉及基因表达数据的参数和半参数建模。DNA微阵列和其他用于分析复杂核酸序列的高通量方法现在使得快速、有效和准确地测量生物样品中表达的许多基因的水平成为可能。微阵列数据分析的主要困难在于,与问题的维度(基因数量)相比,样本量非常小。单个个体的基因数量通常是数千个,数据集中的个体很少。我们提出了几种新的参数贝叶斯建模方法的基因选择,肿瘤分类,贝叶斯网络,基因聚类和降维方法。大多数现有的方法都不是基于模型的,因此无法解决有关正式评估不确定性或评估特定模型的拟合度的具体问题。此外,基于模型的方法提供了扩展到更复杂情况的可能性,例如,我们将开发用于微阵列数据的贝叶斯分层模型,该模型将在不同水平上灵活地容纳几个建模因素。在几个建模框架中,我们将保持模型空间的维度未知,以增加灵活性。在这些灵活的模型类别中不可能得到分析答案,因此将使用基于模拟的马尔可夫链蒙特卡罗(MCMC)方法和维度跳跃算法来推导未知参数的估计值(不确定性分布)。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bani K Mallick其他文献
Methods matter for dietary supplement exposure assessment: comparing prevalence, product types, and amounts of nutrients from dietary supplements in the Interactive Diet and Activity Tracking in the American Association of Retired Persons cohort study
方法对膳食补充剂暴露评估很重要:比较美国退休人员协会队列研究中互动饮食和活动追踪中膳食补充剂的患病率、产品类型和营养素含量
- DOI:
10.1016/j.ajcnut.2025.03.020 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:6.900
- 作者:
Alexandra E Cowan-Pyle;Regan L Bailey;Jaime J Gahche;Johanna T Dwyer;Lindsay M Reynolds;Raymond J Carroll;Bani K Mallick;Diane C Mitchell;Janet A Tooze - 通讯作者:
Janet A Tooze
Bani K Mallick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bani K Mallick', 18)}}的其他基金
Bayesian Models for Gene Expression with Microarray Data
利用微阵列数据进行基因表达的贝叶斯模型
- 批准号:
7075306 - 财政年份:2005
- 资助金额:
$ 27.25万 - 项目类别:
Bayesian Models for Gene Expression with Microarray Data
利用微阵列数据进行基因表达的贝叶斯模型
- 批准号:
6968079 - 财政年份:2005
- 资助金额:
$ 27.25万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 27.25万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 27.25万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 27.25万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 27.25万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 27.25万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 27.25万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 27.25万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 27.25万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 27.25万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 27.25万 - 项目类别:
Research Grant














{{item.name}}会员




