Bayesian Models for Gene Expression with Microarray Data

利用微阵列数据进行基因表达的贝叶斯模型

基本信息

  • 批准号:
    7075306
  • 负责人:
  • 金额:
    $ 28.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-06-10 至 2008-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This project is concerned with parametric and semiparametric modeling of gene expression data. DNA microarrays and other high-throughput methods for analyzing complex nucleic acid sequences now make it possible to rapidly, efficiently and accurately measure the levels of many genes expressed in a biological sample. The main difficulty with microarray data analysis is that the sample size is very small when compared to the dimension of the problem (the number of genes). The number of genes for a single individual is usually in the thousands and there are few individuals in the data set. We propose several novel parametric Bayesian modeling approaches for gene selection, tumor classification, Bayesian networks, gene clustering and dimension reduction methods. Most of the existing methods are not model-based and thus are unable to address specific questions regarding formal assessment of uncertainties or assessment of the fit of a specific model. Also model-based approaches offer the potential for extension to more complex situations, e.g., probabilistic mixture modeling, handling missing data, etc. We will develop Bayesian hierarchical models for microarray data, which will accommodate several modeling factors flexibly at different levels. In several of the modeling frameworks, we will keep the dimension of the model space unknown to create added flexibility. It is impossible to get analytical answers in these flexible classes of models so simulation based Markov Chain Monte Carlo (MCMC) methodology with dimensional jumping algorithms will be used to derive the estimates (uncertainty distributions) of the unknown parameters.
描述(申请人提供):本项目涉及基因表达数据的参数和半参数建模。DNA微阵列和其他用于分析复杂核酸序列的高通量方法现在使得快速、有效和准确地测量生物样品中表达的许多基因的水平成为可能。微阵列数据分析的主要困难在于,与问题的维度(基因数量)相比,样本量非常小。单个个体的基因数量通常是数千个,数据集中的个体很少。我们提出了几种新的参数贝叶斯建模方法的基因选择,肿瘤分类,贝叶斯网络,基因聚类和降维方法。大多数现有的方法都不是基于模型的,因此无法解决有关正式评估不确定性或评估特定模型的拟合度的具体问题。此外,基于模型的方法提供了扩展到更复杂情况的可能性,例如,我们将开发用于微阵列数据的贝叶斯分层模型,该模型将在不同水平上灵活地容纳几个建模因素。在几个建模框架中,我们将保持模型空间的维度未知,以增加灵活性。在这些灵活的模型类别中不可能得到分析答案,因此将使用基于模拟的马尔可夫链蒙特卡罗(MCMC)方法和维度跳跃算法来推导未知参数的估计值(不确定性分布)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bani K Mallick其他文献

Methods matter for dietary supplement exposure assessment: comparing prevalence, product types, and amounts of nutrients from dietary supplements in the Interactive Diet and Activity Tracking in the American Association of Retired Persons cohort study
方法对膳食补充剂暴露评估很重要:比较美国退休人员协会队列研究中互动饮食和活动追踪中膳食补充剂的患病率、产品类型和营养素含量
  • DOI:
    10.1016/j.ajcnut.2025.03.020
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    6.900
  • 作者:
    Alexandra E Cowan-Pyle;Regan L Bailey;Jaime J Gahche;Johanna T Dwyer;Lindsay M Reynolds;Raymond J Carroll;Bani K Mallick;Diane C Mitchell;Janet A Tooze
  • 通讯作者:
    Janet A Tooze

Bani K Mallick的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bani K Mallick', 18)}}的其他基金

Bayesian Models for Gene Expression with Microarray Data
利用微阵列数据进行基因表达的贝叶斯模型
  • 批准号:
    7237216
  • 财政年份:
    2005
  • 资助金额:
    $ 28.06万
  • 项目类别:
Bayesian Models for Gene Expression with Microarray Data
利用微阵列数据进行基因表达的贝叶斯模型
  • 批准号:
    6968079
  • 财政年份:
    2005
  • 资助金额:
    $ 28.06万
  • 项目类别:

相似海外基金

FAIRClinical: FAIR-ification of Supplementary Data to Support Clinical Research
FAIRClinical:补充数据的 FAIR 化以支持临床研究
  • 批准号:
    EP/Y036395/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.06万
  • 项目类别:
    Research Grant
Optimizing integration of veterinary clinical research findings with human health systems to improve strategies for early detection and intervention
优化兽医临床研究结果与人类健康系统的整合,以改进早期检测和干预策略
  • 批准号:
    10764456
  • 财政年份:
    2023
  • 资助金额:
    $ 28.06万
  • 项目类别:
The IDeA State Consortium for a Clinical Research Resource Center: Increasing Clinical Trials in IDeA States through Communication of Opportunities, Effective Marketing, and WorkforceDevelopment
IDeA 州临床研究资源中心联盟:通过机会交流、有效营销和劳动力发展增加 IDeA 州的临床试验
  • 批准号:
    10715568
  • 财政年份:
    2023
  • 资助金额:
    $ 28.06万
  • 项目类别:
The Mayo Clinic NeuroNEXT Clinical Research Site
梅奥诊所 NeuroNEXT 临床研究网站
  • 批准号:
    10743328
  • 财政年份:
    2023
  • 资助金额:
    $ 28.06万
  • 项目类别:
Addressing Underperformance in Clinical Trial Enrollments: Development of a Clinical Trial Toolkit and Expansion of the Clinical Research Footprint
解决临床试验注册表现不佳的问题:开发临床试验工具包并扩大临床研究足迹
  • 批准号:
    10638813
  • 财政年份:
    2023
  • 资助金额:
    $ 28.06万
  • 项目类别:
Improving Multicultural Engagement in Clinical Research through Partnership with Federally Qualified Health Centers and Community Health Worker Programs
通过与联邦合格的健康中心和社区卫生工作者计划合作,改善临床研究中的多元文化参与
  • 批准号:
    10823828
  • 财政年份:
    2023
  • 资助金额:
    $ 28.06万
  • 项目类别:
The Minnesota TMD IMPACT Collaborative: Integrating Basic/Clinical Research Efforts and Training to Improve Clinical Care
明尼苏达州 TMD IMPACT 协作:整合基础/临床研究工作和培训以改善临床护理
  • 批准号:
    10828665
  • 财政年份:
    2023
  • 资助金额:
    $ 28.06万
  • 项目类别:
Promoting a Culture Of Innovation, Mentorship, Diversity and Opportunity in NCI Sponsored Clinical Research: NCI Research Specialist (Clinician Scientist) Award Application of Janice M. Mehnert, M.D.
在 NCI 资助的临床研究中促进创新、指导、多样性和机会文化:Janice M. Mehnert 医学博士的 NCI 研究专家(临床科学家)奖申请
  • 批准号:
    10721095
  • 财政年份:
    2023
  • 资助金额:
    $ 28.06万
  • 项目类别:
Clinical Research Center for REstoration of NEural-based Function in the Real World (RENEW)
现实世界神经功能恢复临床研究中心 (RENEW)
  • 批准号:
    10795328
  • 财政年份:
    2023
  • 资助金额:
    $ 28.06万
  • 项目类别:
Mentoring Scientists for Careers in HIV Translational Clinical Research
指导科学家从事艾滋病毒转化临床研究
  • 批准号:
    10762827
  • 财政年份:
    2023
  • 资助金额:
    $ 28.06万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了