CELL AND GENETIC APPROACHES TO ENAMEL BIOMIMETICS

牙釉质仿生学的细胞和遗传学方法

基本信息

  • 批准号:
    7223470
  • 负责人:
  • 金额:
    $ 37.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-08-01 至 2010-04-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Deciphering structure-function relationships is the fundamental underpinning of our biomedical knowledge and provides the basis for our ability to create novel materials and drugs by knowledge-based design. Powerful tools aimed towards deciphering structure-function outcomes is germ-line genetic manipulation in mice. Enamel is a composite tissue with unique material properties that are owed to its biological fabrication. Ameloblast cells create an enamel protein matrix that serves to control crystallite habit and the organization of crystallite bundles. We hypothesize that the structure of enamel, from the nanoscale to the macroscale, is the outcome of the function(s) of critical domains within the ameloblastin protein. Ablating protein expression by aknock out shows the requirement for amelogenin and ameloblastin protein for normal enamel formation, although the loss of function does not provide insight into the underlying mechanism of protein action. The loss of ameloblastin disrupts ameloblast cell interactions with the matrix resulting in ameloblasts detaching from the forming matrix and re-entering the cell cycle. Here the process of enamel formation is so severely disrupted that the underlying function(s) of the ameloblastin protein in normal tissue formation is difficult to discern. We hypothesize that using a knock-in strategy will allow us to link the identity of a specific ameloblastin protein domain(s) to the function(s) it contributes to formation of the enamel tissue. We propose the use of homologous recombination coupled with protein engineering of a human ameloblastin minigene in order to modify the mouse genome and to decipher the function(s) that human ameloblastin domain(s) contribute to enamel biomineralization. Insights from similar work performed for the amelogenin protein suggests that the approach of knock-in gene targeting of a minigene preserves the qualitative and quantitative aspects of gene expression while permitting the use of an ameloblastin minigene designed to express an engineered ameloblastin protein that will allow insights into the function of the engineered protein. Functional changes will be measured by alteration to stereotypic enamel architecture and by analysis of the material properties of the enamel in the knock in condition compared to wild type animals. This experimental strategy will contribute significant information to functional genomics and to further understanding of the only ectoderm-derived biomineralized tissue in the vertebrate body. Preliminary data from this group on the use of a similar strategy using a knock-in engineered amelogeninminigene suggest that this approach will yield novel insights into the structure-function relationship for the ameloblastin protein, the second most abundant protein contributing to enamel organic matrix assembly and biomineralization. Humanizing rodent enamel will also yield a new animal model that would be useful to investigators exploring the most prevalent infectious disease of mankind, dental caries. PUBLIC HEALTH RELEVANCE: The function(s) for the second most abundant protein of the forming mammalian enamel matrix is not known. Knocking out ameloblastin demonstrated that it plays an essential role, as enamel did not form in the absence of ameloblastin. Here, we map the function(s) of ameloblastin domains to the production of an enamel matrix required to control enamel biomineralization thus humanizing an animal model used to study caries, the most prevalent infectious disease of humankind.
DESCRIPTION (provided by applicant): Deciphering structure-function relationships is the fundamental underpinning of our biomedical knowledge and provides the basis for our ability to create novel materials and drugs by knowledge-based design. Powerful tools aimed towards deciphering structure-function outcomes is germ-line genetic manipulation in mice. Enamel is a composite tissue with unique material properties that are owed to its biological fabrication. Ameloblast cells create an enamel protein matrix that serves to control crystallite habit and the organization of crystallite bundles. We hypothesize that the structure of enamel, from the nanoscale to the macroscale, is the outcome of the function(s) of critical domains within the ameloblastin protein. Ablating protein expression by aknock out shows the requirement for amelogenin and ameloblastin protein for normal enamel formation, although the loss of function does not provide insight into the underlying mechanism of protein action. The loss of ameloblastin disrupts ameloblast cell interactions with the matrix resulting in ameloblasts detaching from the forming matrix and re-entering the cell cycle. Here the process of enamel formation is so severely disrupted that the underlying function(s) of the ameloblastin protein in normal tissue formation is difficult to discern. We hypothesize that using a knock-in strategy will allow us to link the identity of a specific ameloblastin protein domain(s) to the function(s) it contributes to formation of the enamel tissue. We propose the use of homologous recombination coupled with protein engineering of a human ameloblastin minigene in order to modify the mouse genome and to decipher the function(s) that human ameloblastin domain(s) contribute to enamel biomineralization. Insights from similar work performed for the amelogenin protein suggests that the approach of knock-in gene targeting of a minigene preserves the qualitative and quantitative aspects of gene expression while permitting the use of an ameloblastin minigene designed to express an engineered ameloblastin protein that will allow insights into the function of the engineered protein. Functional changes will be measured by alteration to stereotypic enamel architecture and by analysis of the material properties of the enamel in the knock in condition compared to wild type animals. This experimental strategy will contribute significant information to functional genomics and to further understanding of the only ectoderm-derived biomineralized tissue in the vertebrate body. Preliminary data from this group on the use of a similar strategy using a knock-in engineered amelogeninminigene suggest that this approach will yield novel insights into the structure-function relationship for the ameloblastin protein, the second most abundant protein contributing to enamel organic matrix assembly and biomineralization. Humanizing rodent enamel will also yield a new animal model that would be useful to investigators exploring the most prevalent infectious disease of mankind, dental caries. PUBLIC HEALTH RELEVANCE: The function(s) for the second most abundant protein of the forming mammalian enamel matrix is not known. Knocking out ameloblastin demonstrated that it plays an essential role, as enamel did not form in the absence of ameloblastin. Here, we map the function(s) of ameloblastin domains to the production of an enamel matrix required to control enamel biomineralization thus humanizing an animal model used to study caries, the most prevalent infectious disease of humankind.

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Minimal amelogenin domain for enamel formation.
  • DOI:
    10.1007/s11837-021-04687-x
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Geng S;Lei Y;Snead ML
  • 通讯作者:
    Snead ML
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Malcolm L. Snead其他文献

Malcolm L. Snead的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Malcolm L. Snead', 18)}}的其他基金

Peptide Enabled Tunable Restorative Interface
肽启用的可调恢复接口
  • 批准号:
    10892709
  • 财政年份:
    2023
  • 资助金额:
    $ 37.05万
  • 项目类别:
Inducing Dental Implant Bone Formation to Treat Peri-implantitis
诱导牙种植体骨形成治疗种植体周围炎
  • 批准号:
    9408412
  • 财政年份:
    2017
  • 资助金额:
    $ 37.05万
  • 项目类别:
DETERMINATION AND EXPRESSION OF AMELOGENIN GENE PRODUCTS
釉原蛋白基因产物的测定和表达
  • 批准号:
    7841082
  • 财政年份:
    2009
  • 资助金额:
    $ 37.05万
  • 项目类别:
DETERMINATION AND EXPRESSION OF AMELOGENIN GENE PRODUCTS
釉原蛋白基因产物的测定和表达
  • 批准号:
    7812613
  • 财政年份:
    2009
  • 资助金额:
    $ 37.05万
  • 项目类别:
BUILDING THE TOOTH: BRIDGING BIOLOGY IN MATERIAL SCIENCES
构建牙齿:在材料科学中架起生物学桥梁
  • 批准号:
    7089324
  • 财政年份:
    2006
  • 资助金额:
    $ 37.05万
  • 项目类别:
GORDON RESEARCH CONFERENCE ON BIOMINERALIZATION
戈登生物矿化研究会议
  • 批准号:
    6145207
  • 财政年份:
    2000
  • 资助金额:
    $ 37.05万
  • 项目类别:
CELL AND GENETIC APPROACHES TO ENAMEL BIOMIMETICS
牙釉质仿生学的细胞和遗传学方法
  • 批准号:
    6799888
  • 财政年份:
    1998
  • 资助金额:
    $ 37.05万
  • 项目类别:
CELL AND GENETIC APPROACHES TO ENAMEL BIOMIMETICS
牙釉质仿生学的细胞和遗传学方法
  • 批准号:
    2796535
  • 财政年份:
    1998
  • 资助金额:
    $ 37.05万
  • 项目类别:
CELL AND GENETIC APPROACHES TO ENAMEL BIOMIMETICS
牙釉质仿生学的细胞和遗传学方法
  • 批准号:
    6516537
  • 财政年份:
    1998
  • 资助金额:
    $ 37.05万
  • 项目类别:
CELL AND GENETICS APPROACHES TO ENAMEL BIOMIMETICS
牙釉质仿生学的细胞和遗传学方法
  • 批准号:
    8106413
  • 财政年份:
    1998
  • 资助金额:
    $ 37.05万
  • 项目类别:

相似海外基金

Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
  • 批准号:
    495434
  • 财政年份:
    2023
  • 资助金额:
    $ 37.05万
  • 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
  • 批准号:
    10586596
  • 财政年份:
    2023
  • 资助金额:
    $ 37.05万
  • 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
  • 批准号:
    10590479
  • 财政年份:
    2023
  • 资助金额:
    $ 37.05万
  • 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
  • 批准号:
    10642519
  • 财政年份:
    2023
  • 资助金额:
    $ 37.05万
  • 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
  • 批准号:
    23K06011
  • 财政年份:
    2023
  • 资助金额:
    $ 37.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
  • 批准号:
    10682117
  • 财政年份:
    2023
  • 资助金额:
    $ 37.05万
  • 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
  • 批准号:
    10708517
  • 财政年份:
    2023
  • 资助金额:
    $ 37.05万
  • 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
  • 批准号:
    10575566
  • 财政年份:
    2023
  • 资助金额:
    $ 37.05万
  • 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
  • 批准号:
    23K15696
  • 财政年份:
    2023
  • 资助金额:
    $ 37.05万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
  • 批准号:
    23K15867
  • 财政年份:
    2023
  • 资助金额:
    $ 37.05万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了