Statistical Testing and Power for MH Research

MH 研究的统计测试和功效

基本信息

  • 批准号:
    7198032
  • 负责人:
  • 金额:
    $ 16.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-05-01 至 2008-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Over the last decade, mental health services researchers have made widespread use of generalized mixed-effects regression models for analysis of clustered and longitudinal data. Much of the work in this area has involved the development of efficient methods of statistical estimation, based on maximum marginal likelihood, empirical Bayes, and fully Bayesian estimation strategies. Generalization of the original model for continuous and normally distributed data to the case of non-linear mixed-effects regression models for binary, ordinal, nominal, and Poisson, distributions are now generally available and enjoy widespread use. Furthermore, computer software has now been developed and is either freely available over the Internet or commercially available. With the speed of this development and acceptance by the research community, it is therefore somewhat surprising that so little research has been conducted on the issue of hypothesis testing for generalized mixed-effects regression models. Indeed, traditional approaches of large sample tests based on likelihood ratios and Wald-type statistics are all that are generally available. These approaches are limited due to their large sample properties in addition to well-known limitations for testing models with varying numbers of random effects. Furthermore, in addition to the absence of an arsenal of tools for statistical testing, the literature is also quite limited with respect to statistically rigorous approaches to computing statistical power for clustered and longitudinal designs. For non-linear mixed-models (e.g., binary and ordinal cases), the literature on statistical power is virtually nonexistent, and gross oversimplification of the study design, estimation, and testing procedures must be used to obtain any estimates of the number of measurements needed at each level of nesting that are required to test a hypothesis with a reasonable balance of Type I and II errors. The primary goal of this proposal is to fill this void by (1) studying the large and small sample properties of various existing and new tests suitable for generalized linear and non-linear mixed-effects regression models, (2) to develop statistically rigorous approaches to computing statistical power for this class of models that is now so widely used by behavioral, social, and biological scientists in general, and health and mental health services researchers in particular, and (3) to develop a computer program for computing statistical power for linear and non-linear mixed-effects regression models (MIXPWR), and to incorporate these new tests into the existing programs (MIXREG, MIXOR, MIXPREG, MIXNO), which are distributed freely from ww.uic.edu/Iabs/biostat. Preliminary results reveal that the new small sample tests that we have derived provide the ability to detect dramatically smaller effects in small samples and increased statistical power over traditional large sample tests even when sample sizes are large. The net result is the ability to use rigorous statistical methods for analysis of longitudinal and clustered data, even in small and difficult to recruit populations such as minorities, homeless, and those at high risk for suicide.
描述(由申请人提供):在过去的十年中,精神卫生服务研究人员广泛使用广义混合效应回归模型分析聚类和纵向数据。这一领域的大部分工作都涉及开发基于最大边际似然、经验贝叶斯和完全贝叶斯估计策略的有效统计估计方法。 将连续和正态分布数据的原始模型推广到二元、有序、名义和泊松分布的非线性混合效应回归模型,现在已经普遍可用并得到广泛使用。此外,计算机软件现已开发出来,可通过互联网免费获得或通过商业渠道获得。 随着这一发展的速度和接受的研究界,因此,这是有点令人惊讶的是,这么少的研究已经进行了广义混合效应回归模型的假设检验的问题。事实上,基于似然比和Wald型统计量的大样本检验的传统方法是所有通常可用的方法。这些方法是有限的,因为它们的大样本属性,除了众所周知的限制,测试模型与不同数量的随机效应。 此外,除了缺乏统计检验的工具库,文献也相当有限,在统计上严格的方法来计算聚类和纵向设计的统计能力。 对于非线性混合模型(例如,二进制和有序的情况下),统计功效的文献几乎是不存在的,研究设计,估计和检验程序的严重过度简化必须使用获得任何估计的测量数量需要在每个嵌套水平,需要检验一个假设与I型和II型错误的合理平衡。该提案的主要目标是通过以下方式填补这一空白:(1)研究适用于广义线性和非线性混合效应回归模型的各种现有和新测试的大样本和小样本特性,(2)开发统计上严格的方法来计算这类模型的统计功效,这类模型现在被行为,社会和生物科学家广泛使用,特别是健康和心理健康服务研究人员,以及(3)开发用于计算线性和非线性混合效应回归模型(MIXPWR)统计功效的计算机程序,并将这些新测试纳入现有程序(MIXREG、MIXOR、MIXPREG、MIXNO),这些程序可从www.example.com免费分发ww.uic.edu/Iabs/biostat。 初步结果表明,新的小样本测试,我们已经得到了提供的能力,以检测显着较小的影响,在小样本和传统的大样本测试,即使当样本量很大的统计功率增加。最终的结果是能够使用严格的统计方法来分析纵向和集群数据,即使是在小而难以招募的人群中,如少数民族,无家可归者和自杀风险高的人群。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Optimal Test for Variance Components of Multivariate Mixed-Effects Linear Models.
多元混合效应线性模型方差分量的最优检验。
  • DOI:
    10.1016/j.jmva.2013.10.014
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Aryal,Subhash;Bhaumik,DulalK;Mathew,Thomas;Gibbons,RobertD
  • 通讯作者:
    Gibbons,RobertD
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dulal Kumar Bhaumik其他文献

Dulal Kumar Bhaumik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dulal Kumar Bhaumik', 18)}}的其他基金

Statistical Testing and Power for MH Research
MH 研究的统计测试和功效
  • 批准号:
    7060318
  • 财政年份:
    2005
  • 资助金额:
    $ 16.81万
  • 项目类别:
Statistical Testing and Power for MH Research
MH 研究的统计测试和功效
  • 批准号:
    6926725
  • 财政年份:
    2005
  • 资助金额:
    $ 16.81万
  • 项目类别:

相似海外基金

Exploring the mental health and wellbeing of adolescent parent families affected by HIV in South Africa
探讨南非受艾滋病毒影响的青少年父母家庭的心理健康和福祉
  • 批准号:
    ES/Y00860X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.81万
  • 项目类别:
    Fellowship
Scaling-up co-designed adolescent mental health interventions
扩大共同设计的青少年心理健康干预措施
  • 批准号:
    MR/Y020286/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.81万
  • 项目类别:
    Fellowship
Shared Spaces: The How, When, and Why of Adolescent Intergroup Interactions
共享空间:青少年群体间互动的方式、时间和原因
  • 批准号:
    ES/T014709/2
  • 财政年份:
    2024
  • 资助金额:
    $ 16.81万
  • 项目类别:
    Research Grant
Social Media Mechanisms Affecting Adolescent Mental Health (SoMe3)
影响青少年心理健康的社交媒体机制 (SoMe3)
  • 批准号:
    MR/X034925/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.81万
  • 项目类别:
    Fellowship
Parent-adolescent informant discrepancies: Predicting suicide risk and treatment outcomes
父母与青少年信息差异:预测自杀风险和治疗结果
  • 批准号:
    10751263
  • 财政年份:
    2024
  • 资助金额:
    $ 16.81万
  • 项目类别:
Adolescent sugar overconsumption programs food choices via altered dopamine signalling
青少年糖过度消费通过改变多巴胺信号来影响食物选择
  • 批准号:
    BB/Y006496/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.81万
  • 项目类别:
    Research Grant
The Impact of Online Social Interactions on Adolescent Cognition
在线社交互动对青少年认知的影响
  • 批准号:
    DE240101039
  • 财政年份:
    2024
  • 资助金额:
    $ 16.81万
  • 项目类别:
    Discovery Early Career Researcher Award
Resilience Factors, Pain, and Physical Activity in Adolescent Chronic Musculoskeletal Pain
青少年慢性肌肉骨骼疼痛的弹性因素、疼痛和体力活动
  • 批准号:
    10984668
  • 财政年份:
    2024
  • 资助金额:
    $ 16.81万
  • 项目类别:
Augmented Social Play (ASP): smartphone-enabled group psychotherapeutic interventions that boost adolescent mental health by supporting real-world connection and sense of belonging
增强社交游戏 (ASP):智能手机支持的团体心理治疗干预措施,通过支持现实世界的联系和归属感来促进青少年心理健康
  • 批准号:
    10077933
  • 财政年份:
    2023
  • 资助金额:
    $ 16.81万
  • 项目类别:
    EU-Funded
Family-Focused Adolescent & Lifelong Health Promotion (FLOURISH)
以家庭为中心的青少年
  • 批准号:
    10050850
  • 财政年份:
    2023
  • 资助金额:
    $ 16.81万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了