CRCNS: Complete functional characterization of a population of retinal ganglion c
CRCNS:视网膜神经节 c 群体的完整功能表征
基本信息
- 批准号:7289812
- 负责人:
- 金额:$ 41.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-22 至 2011-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBiological Neural NetworksBrainCell CountCellsClassClassificationCodeComplexComputational TechniqueComputer SimulationDataDepthDiscriminationDiseaseDisruptionElectric StimulationElectrodesElementsEnvironmentFeedbackFire - disastersGenerationsHealthHumanImageIndiumInterneuronsLeadLightLiteratureLocalizedMacacaMaximum Likelihood EstimateMethodologyMethodsModelingMonkeysNeuronsNeurosciencesNoiseOrganismPatternPerformancePhysiologicalPopulationPropertyProsthesisRecording of previous eventsResearchRetinaRetinalRetinal Ganglion CellsSensorySignal TransductionSolutionsSourceStatistical ModelsStereotypingStimulusStructureSystemTechniquesTechnologyTestingTimeTrainingVisionVisualVisual system structureWorkbasedesignneural prosthesisnovelreceptive fieldrelating to nervous systemresearch studyresponseretinal neuronsensory systemstatisticstoolvisual informationvisual stimulus
项目摘要
DESCRIPTION (provided by applicant): The objective of the proposed research is to understand how entire populations of retinal neurons convey visual information to the brain, how the activity of the retinal network activity emerges from its elements, and how network function serves the needs of the organism. Until now, progress on these basic problems has been limited by lack of: (a) direct experimental access to the activity of a complete population of neurons, and (b) models of multineuronal responses that allow us to understand how complete populations of neurons interact to represent information. We have recently developed techniques for recording from complete populations of retinal ganglion cells (RGCs) in isolated macaque monkey retina, and approaches to modeling these responses that provide great promise in understanding how the entire network encodes the visual scene. We will combine these powerful new techniques to address the following aims: (1) How do sensory inputs, nonlinearities, noise, and inter-connections combine to determine the detailed spiking patterns in large ensembles of RGCs? (2) How effectively can visual stimuli be decoded based on the ensemble firing patterns of RGCs, and how does stimulus discriminability depend on the fine temporal structure of spike trains? (3) What aspects of the visual stimulus are most effectively encoded by ensemble RGC activity, and to what degree do these reflect the perceptual abilities of humans and the structure of the natural visual environment?
Relevance: Because retinal ganglion cells transmit all visual information to the brain, understanding how they collectively encode visual information is a fundamental aspect of understanding vision, in health and in disease. The proposed work will for the first time allow us to explain the spike trains of a complete population of cells in a single framework that incorporates their response properties, sources of physiological noise, and network connectivity. Each of these ultimately contribute to the healthy function of the visual system, while disruption of each will degrade the visual signals transmitted by the RGC population to the brain in ways that may be predicted and understood with the proposed approach. Furthermore, prosthetic devices to replace retinal function, which are now being tested in humans, will eventually need to reproduce the normal patterns of spiking activity in order to provide natural visual signals to the brain. Therefore, our recent experiments using electrical stimulation with multi-electrode arrays for prosthetic design will benefit greatly from the proposed work. In summary, knowing how the entire retinal network encodes the visual scene in spike trains is a key element in understanding the healthy visual system and designing prosthetic treatments for retinas damaged by disease.
描述(由申请人提供):拟议研究的目的是了解整个视网膜神经元群体如何向大脑传达视觉信息,视网膜网络活动的活动如何从其元素中出现,以及网络功能如何满足生物体的需求。到目前为止,这些基本问题的进展一直受到缺乏的限制:(a)直接实验访问的活动,一个完整的群体的神经元,(B)模型的多神经元的反应,使我们能够理解如何完整的群体的神经元相互作用,以代表信息。我们最近开发了从孤立的猕猴视网膜中的视网膜神经节细胞(RGC)的完整群体记录的技术,以及对这些反应进行建模的方法,这些方法为理解整个网络如何编码视觉场景提供了很大的希望。我们将联合收割机结合这些强大的新技术,以解决以下目标:(1)感觉输入,非线性,噪声,和内部连接如何结合联合收割机,以确定详细的尖峰模式,在大型合奏的RGC?(2)如何有效地解码视觉刺激的基础上的整体放电模式的RGCs,以及刺激的可辨别性如何依赖于精细的时间结构的穗火车?(3)视觉刺激的哪些方面最有效地编码的合奏RGC活动,以及在何种程度上这些反映了人类的感知能力和自然视觉环境的结构?
相关性:由于视网膜神经节细胞将所有视觉信息传输到大脑,因此了解它们如何共同编码视觉信息是了解视觉的基本方面,无论是健康还是疾病。这项工作将首次使我们能够在一个单一的框架中解释完整细胞群体的尖峰序列,该框架将其响应特性,生理噪声来源和网络连接结合起来。每一个都最终有助于视觉系统的健康功能,而每一个的破坏都会降低RGC群体传输到大脑的视觉信号,其方式可以用所提出的方法预测和理解。此外,替代视网膜功能的假体装置目前正在人类身上进行测试,最终需要重现正常的尖峰活动模式,以便向大脑提供自然的视觉信号。因此,我们最近的实验使用多电极阵列的电刺激假肢设计将大大受益于所提出的工作。总之,了解整个视网膜网络如何在尖峰序列中编码视觉场景是理解健康视觉系统和设计疾病损伤视网膜修复治疗的关键因素。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
EDUARDO CHICHILNISKY其他文献
EDUARDO CHICHILNISKY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('EDUARDO CHICHILNISKY', 18)}}的其他基金
Diverse visual processing properties of novel ganglion cell and amacrine cell types in the human retina
人类视网膜中新型神经节细胞和无长突细胞类型的多样化视觉处理特性
- 批准号:
10585887 - 财政年份:2023
- 资助金额:
$ 41.93万 - 项目类别:
Bi-directional neural interface for probing parallel visual pathways
用于探测平行视觉通路的双向神经接口
- 批准号:
10470807 - 财政年份:2021
- 资助金额:
$ 41.93万 - 项目类别:
Bi-directional neural interface for probing parallel visual pathways
用于探测平行视觉通路的双向神经接口
- 批准号:
10659150 - 财政年份:2021
- 资助金额:
$ 41.93万 - 项目类别:
Bi-directional neural interface for probing parallel visual pathways
用于探测平行视觉通路的双向神经接口
- 批准号:
10277396 - 财政年份:2021
- 资助金额:
$ 41.93万 - 项目类别:
Unique physiological properties of novel ganglion cell types in primate retina
灵长类视网膜新型神经节细胞类型的独特生理特性
- 批准号:
10200063 - 财政年份:2018
- 资助金额:
$ 41.93万 - 项目类别:
Unique physiological properties of novel ganglion cell types in primate retina
灵长类视网膜新型神经节细胞类型的独特生理特性
- 批准号:
10585889 - 财政年份:2018
- 资助金额:
$ 41.93万 - 项目类别:
Unique physiological properties of novel ganglion cell types in primate retina
灵长类视网膜新型神经节细胞类型的独特生理特性
- 批准号:
9789896 - 财政年份:2018
- 资助金额:
$ 41.93万 - 项目类别:
Large-Scale Patterned Electrical Stimulation for Design of Retinal Prostheses
用于视网膜假体设计的大规模图案化电刺激
- 批准号:
9900010 - 财政年份:2017
- 资助金额:
$ 41.93万 - 项目类别:
Patterned Electrical Stimulation of the Retina for High-Resolution Prostheses
用于高分辨率假体的视网膜图案化电刺激
- 批准号:
8708868 - 财政年份:2014
- 资助金额:
$ 41.93万 - 项目类别:
Patterned Electrical Stimulation of the Retina for High-Resolution Prostheses
用于高分辨率假体的视网膜图案化电刺激
- 批准号:
8796029 - 财政年份:2014
- 资助金额:
$ 41.93万 - 项目类别:
相似海外基金
GCR: Reprogramming Biological Neural Networks with Field-Based Engineered Systems
GCR:使用基于现场的工程系统重新编程生物神经网络
- 批准号:
2121164 - 财政年份:2021
- 资助金额:
$ 41.93万 - 项目类别:
Continuing Grant
How do biological neural networks learn to predict their environment?
生物神经网络如何学习预测其环境?
- 批准号:
2610330 - 财政年份:2021
- 资助金额:
$ 41.93万 - 项目类别:
Studentship
Convergence: RAISE Integrating machine learning and biological neural networks
融合:RAISE 集成机器学习和生物神经网络
- 批准号:
1848029 - 财政年份:2018
- 资助金额:
$ 41.93万 - 项目类别:
Standard Grant
The decoding of synchrony changes by biological neural networks
生物神经网络解码同步变化
- 批准号:
347667-2007 - 财政年份:2007
- 资助金额:
$ 41.93万 - 项目类别:
Postgraduate Scholarships - Master's
Feasibility Study of Biological Neural Networks Formations on a VLSI Chip
VLSI 芯片上生物神经网络形成的可行性研究
- 批准号:
9318328 - 财政年份:1993
- 资助金额:
$ 41.93万 - 项目类别:
Standard Grant
BIOLOGICAL NEURAL NETWORKS IN AUDITORY SYSTEM: ELECTRODE PROBE
听觉系统中的生物神经网络:电极探针
- 批准号:
5225762 - 财政年份:
- 资助金额:
$ 41.93万 - 项目类别: