CRCNS: Where to look next? Modeling eye movements in normal and impaired vision

CRCNS:接下来看哪里?

基本信息

项目摘要

DESCRIPTION (provided by applicant): The goal of this proposal is to gain a better understanding of the information processing and decision strategies that underlie eye movement planning in both the normal and diseased state. In patients with age-related macular degeneration (AMD), central areas of the retina are damaged, creating a large blind spot that forces them to rely solely on residual vision in the periphery. Rehabilitation outcomes for these patients can be successful, but are often inconsistent. Despite similar retinopathies, some patients learn to use their residual vision more effectively than others. We have developed an information-theoretic model and experimental paradigm which will allow us to objectively measure human scanning efficiency. The development of the model has naturally motivated fundamental experimental questions about eye movements and neural decision making. The answers to these questions will be used to refine the model and enhance our understanding of the system in general. We will then apply the model framework to investigate differences in eye movement behavior between AMD patients and normally-sighted individuals. The interplay of model development and experimental investigation will significantly increase our knowledge of how humans use prior knowledge and task demands to direct their gaze, and how new visual information is incorporated into an eye movement plan. The results will have broad relevance to understanding neural decision making in general. Relevance to Public Health. The application of the model to a clinical population will bring much-needed objective measures to understanding the extent of impairment in individuals with AMD. With this understanding comes great potential for improving rehabilitation training strategies that will enhance the quality of life for these patients and their families.
描述(由申请人提供):本提案的目标是更好地了解在正常和患病状态下眼球运动规划所依据的信息处理和决策策略。在老年性黄斑变性(AMD)患者中,视网膜的中央区域受到损害,造成了一个大的盲点,迫使他们仅依赖外围的残余视力。这些患者的康复结果可能是成功的,但往往是不一致的。尽管有类似的视网膜病变,但一些患者学会了比其他患者更有效地使用他们的残余视力。我们开发了一个信息论模型和实验范式,使我们能够客观地测量人类的扫描效率。该模型的发展自然激发了关于眼球运动和神经决策的基本实验问题。这些问题的答案将被用来改进模型,并增强我们对该系统的总体理解。然后,我们将应用该模型框架来研究AMD患者和正常视力个体之间眼动行为的差异。模型开发和实验研究的相互作用将显著增加我们对人类如何使用先前知识和任务要求来指导他们的凝视,以及如何将新的视觉信息纳入眼动计划的了解。这些结果将对总体上理解神经决策具有广泛的相关性。 与公共卫生的相关性。该模型在临床人群中的应用将为了解AMD患者的损害程度带来亟需的客观指标。有了这一认识,就有了改进康复训练战略的巨大潜力,这将提高这些患者及其家人的生活质量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

LAURA LYNN WALKER其他文献

LAURA LYNN WALKER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('LAURA LYNN WALKER', 18)}}的其他基金

Reaching with Central Field Loss
达到中心场损失
  • 批准号:
    8438231
  • 财政年份:
    2012
  • 资助金额:
    $ 24.06万
  • 项目类别:
CRCNS: Where to look next? Modeling eye movements in normal and impaired vision
CRCNS:接下来看哪里?
  • 批准号:
    7904674
  • 财政年份:
    2009
  • 资助金额:
    $ 24.06万
  • 项目类别:
CRCNS: Where to look next? Modeling eye movements in normal and impaired vision
CRCNS:接下来看哪里?
  • 批准号:
    7215031
  • 财政年份:
    2006
  • 资助金额:
    $ 24.06万
  • 项目类别:
CRCNS: Where to Look Next? Modeling Eye Movements in Normal and Impaired Vision
CRCNS:下一步该往哪里看?
  • 批准号:
    8231428
  • 财政年份:
    2006
  • 资助金额:
    $ 24.06万
  • 项目类别:
CRCNS: Where to Look Next? Modeling Eye Movements in Normal and Impaired Vision
CRCNS:下一步该往哪里看?
  • 批准号:
    7784064
  • 财政年份:
    2006
  • 资助金额:
    $ 24.06万
  • 项目类别:
CRCNS: Where to look next? Modeling eye movements in normal and impaired vision
CRCNS:接下来看哪里?
  • 批准号:
    7477064
  • 财政年份:
    2006
  • 资助金额:
    $ 24.06万
  • 项目类别:
CRCNS: Where to Look Next? Modeling Eye Movements in Normal and Impaired Vision
CRCNS:下一步该往哪里看?
  • 批准号:
    8050065
  • 财政年份:
    2006
  • 资助金额:
    $ 24.06万
  • 项目类别:

相似海外基金

CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 24.06万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221742
  • 财政年份:
    2022
  • 资助金额:
    $ 24.06万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221741
  • 财政年份:
    2022
  • 资助金额:
    $ 24.06万
  • 项目类别:
    Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
  • 批准号:
    533529-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 24.06万
  • 项目类别:
    Collaborative Research and Development Grants
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
  • 批准号:
    2008772
  • 财政年份:
    2020
  • 资助金额:
    $ 24.06万
  • 项目类别:
    Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
  • 批准号:
    533529-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 24.06万
  • 项目类别:
    Collaborative Research and Development Grants
Visualization of FPGA CAD Algorithms and Target Architecture
FPGA CAD 算法和目标架构的可视化
  • 批准号:
    541812-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 24.06万
  • 项目类别:
    University Undergraduate Student Research Awards
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759836
  • 财政年份:
    2018
  • 资助金额:
    $ 24.06万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759796
  • 财政年份:
    2018
  • 资助金额:
    $ 24.06万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759807
  • 财政年份:
    2018
  • 资助金额:
    $ 24.06万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了