Ultraprecision Diamond Machining of Conventional Non-Diamond Machinable Materials
传统非金刚石可加工材料的超精密金刚石加工
基本信息
- 批准号:7265234
- 负责人:
- 金额:$ 9.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-05-01 至 2007-10-31
- 项目状态:已结题
- 来源:
- 关键词:AdsorptionAlloysAreaCarbonChemicalsComputersCopperCountryDataData AnalysesDevelopmentDevicesDiagnosticDiagnostic ImagingDiamondDrug Delivery SystemsEffectivenessEquipmentEvaluationFigs - dietaryFutureGoalsGovernmentImaging DeviceLifeMaterials TestingMeasurementMeasuresMedicalMethodsMicrofabricationMoldsNatureNickelOpticsPersonsPhasePlasticsPoisonPower SourcesProcessProductionPurposeReactionResearchResearch DesignRouteSchemeSmall Business Funding MechanismsSmall Business Innovation Research GrantSolutionsStainless SteelStandards of Weights and MeasuresSteelSurfaceSystemTechnologyTestingTitaniumbasecatalystcommercializationcostcost effectiveelectric fieldimprovedinnovative technologiesmicro-total analysis systemnanometernew technologynovelnovel strategiespreventprototypereaction ratesizesuccesstool
项目摘要
DESCRIPTION (provided by applicant): Echemics proposes to explore the feasibility of an innovative technology for the diamond machining of the materials that are not conventionally considered to be diamond machinable. Ultraprecision diamond machining such as diamond turning and milling has been widely used to produce optical-quality surfaces, ultra- precisely remove materials, and fabricate microstructures and microdevices with sub-nanometer level surface finishes and sub-micrometer form accuracies. It is an indispensable machining process for fabricating ultraprecision macro- and micro-optics and non-optical components for biomedical products used for biomedicine, biomedical analysis, diagnostics, and treatments. However, one significant drawback of diamond machining is that it can only machine very limited materials called diamond machinable materials. It cannot machine many important materials such as ferrous alloys, stainless steel, titanium and nickel due to catastrophic diamond tool wear. Current technical solutions for extending diamond tool life only achieve limited success; suffer from high cost and complicated setup; and need additional equipment. The chemical reactive wear of diamond tools resulting from the surface-catalyzed reaction between diamond carbon and workpiece (e.g., steel) is one significant tool wear route. However, the current technical solutions have not explored the possibility of manipulating this catalytic reaction. Therefore, this proposal tries to investigate a novel approach to stop or slow down this catalytic reaction so that the high reaction rate can be greatly reduced and tool life can be extended. In this Phase I project, Echemics aims to prove if the proposed technical approach can indeed extend diamond tool life compared with normal diamond machining. If Phase I is successful, Phase II of the project will improve the process and fabricate some prototype biomedical products. As there is an increasing demand for directly diamond machining non-diamond machinable materials for a wide variety of biomedical and other applications, this proposed technology provides a new solution for this call. If successful, Echemics aims to commercialize this novel technology for growing the company and also making the country's ultraprecision manufacturing sector more competitive. This SBIR Phase I project will explore the feasibility of an innovative technology for the ultraprecision diamond machining of the materials that are not conventionally considered to be diamond machinable. Diamond machining is an indispensable machining process for fabricating ultraprecision macro- and micro- optics and non-optical components for biomedical products, including such as diagnostic imaging devices, drug delivery components, implantable components, lab-on-a-chip devices, micro total analysis systems (¿-TAS), and MEMS (MicroElectroMechanical Systems) for biomedicine, biomedical analysis, diagnostics, and treatments. The proposed technology aims to fabricate totally new devices, improve the quality of existing devices, lower manufacturing costs, and become a more universal rapid prototyping tool.
描述(由申请人提供):化学提出探索一种创新技术的可行性,用于金刚石加工传统上不被认为是金刚石可加工的材料。金刚石车削和铣削等超精密金刚石加工已广泛用于生产光学质量表面,超精密去除材料,以及具有亚纳米级表面光洁度和亚微米形状精度的微结构和微器件。它是制造用于生物医学、生物医学分析、诊断和治疗的生物医学产品的超精密宏、微光学和非光学元件不可缺少的加工工艺。然而,金刚石加工的一个重大缺点是它只能加工非常有限的材料,称为金刚石可加工材料。由于金刚石刀具的灾难性磨损,它不能加工许多重要材料,如铁合金、不锈钢、钛和镍。目前延长金刚石刀具寿命的技术方案成效有限;成本高,设置复杂;还需要额外的设备。金刚石刀具的化学反应磨损是金刚石碳与工件(如钢)表面催化反应产生的一种重要的刀具磨损途径。然而,目前的技术解决方案还没有探索操纵这种催化反应的可能性。因此,本提案试图研究一种新的方法来阻止或减缓这种催化反应,从而大大降低高反应速率,延长工具寿命。在这个一期项目中,Echemics的目的是证明所提出的技术方法与普通金刚石加工相比是否确实可以延长金刚石刀具的寿命。如果第一期项目成功,第二期项目将改进工艺并制造一些生物医学产品原型。由于生物医学和其他应用对金刚石直接加工非金刚石可加工材料的需求日益增加,该技术为这一需求提供了新的解决方案。如果成功,Echemics的目标是将这项新技术商业化,以发展公司,并使该国的超精密制造业更具竞争力。这个SBIR一期项目将探索一种创新技术的可行性,用于超精密金刚石加工传统上不被认为是金刚石可加工的材料。金刚石加工是制造用于生物医学产品的超精密宏、微光学和非光学部件不可或缺的加工工艺,包括诊断成像设备、药物输送部件、可植入部件、片上实验室设备、用于生物医学、生物医学分析、诊断和治疗的微总体分析系统(¿- tas)和MEMS(微机电系统)。提出的技术旨在制造全新的设备,提高现有设备的质量,降低制造成本,并成为一种更通用的快速原型工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gang Zhang其他文献
Gang Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
$ 9.71万 - 项目类别:
Studentship
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 9.71万 - 项目类别:
Continuing Grant
CAREER: Emergence of in-liquid structures in metallic alloys by nucleation and growth
职业:通过成核和生长在金属合金中出现液态结构
- 批准号:
2333630 - 财政年份:2024
- 资助金额:
$ 9.71万 - 项目类别:
Continuing Grant
CAREER: Understanding Interface Controlled Mechanisms of Recrystallization in Microstructurally Complex Mg Alloys
职业:了解微观结构复杂镁合金中界面控制的再结晶机制
- 批准号:
2339387 - 财政年份:2024
- 资助金额:
$ 9.71万 - 项目类别:
Continuing Grant
CAS: Designing Copper-based Multi-metallic Single-atom Alloys for Cross Coupling Reactions through Combined Surface Science and Catalytic Investigations
CAS:通过结合表面科学和催化研究设计用于交叉偶联反应的铜基多金属单原子合金
- 批准号:
2400227 - 财政年份:2024
- 资助金额:
$ 9.71万 - 项目类别:
Continuing Grant
Collaborative Research: Dynamics of Short Range Order in Multi-Principal Element Alloys
合作研究:多主元合金中的短程有序动力学
- 批准号:
2348956 - 财政年份:2024
- 资助金额:
$ 9.71万 - 项目类别:
Standard Grant
Towards use-as-manufactured titanium alloys for additive manufacturing
致力于将钛合金用于增材制造
- 批准号:
LP210301261 - 财政年份:2024
- 资助金额:
$ 9.71万 - 项目类别:
Linkage Projects
Innovative Zn alloys with essential mechanical and biofunctional properties
具有基本机械和生物功能特性的创新锌合金
- 批准号:
DP240101131 - 财政年份:2024
- 资助金额:
$ 9.71万 - 项目类别:
Discovery Projects
Next generation titanium alloys for additive manufacturing
用于增材制造的下一代钛合金
- 批准号:
FT230100683 - 财政年份:2024
- 资助金额:
$ 9.71万 - 项目类别:
ARC Future Fellowships
Impact of impurity elements on the corrosion performance of high strength 6xxx aluminium alloys
杂质元素对高强6xxx铝合金腐蚀性能的影响
- 批准号:
2906344 - 财政年份:2024
- 资助金额:
$ 9.71万 - 项目类别:
Studentship