Multivariate approaches to neuroimaging analysis

神经影像分析的多变量方法

基本信息

项目摘要

DESCRIPTION (provided by applicant): As clinical and cognitive neuroscience mature, the need for sophisticated neuroimaging analysis becomes more apparent. Multivariate analysis techniques have recently received increasing attention. Multivariate techniques have many attractive features that cannot be easily realized by the more commonly used univariate, voxel-wise, techniques. Multivariate approaches evaluate correlation/covariance of activation across brain regions, rather than proceeding on a voxel-by-voxel basis. Thus, their results can be more easily interpreted as a signature of neural networks. Univariate approaches, on the other hand, cannot directly address functional connectivity in the brain. The covariance approach can also result in greater statistical power when compared with univariate techniques, which are forced to employ very stringent, and often overly conservative, corrections for voxel-wise multiple comparisons. Multivariate techniques also lend themselves much better to prospective application of results from the analysis of one dataset to entirely new datasets. Multivariate techniques are thus well placed to provide information about mean differences and correlations with behavior, similarly to univariate approaches, with potentially greater statistical power and better reproducibility checks. In contrast to these advantages is the high barrier of entry to the use of multivariate approaches, preventing more widespread application in the community. To the neuroscientist becoming familiar with multivariate analysis techniques, an initial survey of the field might present a bewildering variety of approaches that, although algorithmically similar, are presented with different emphases, typically by people with mathematics backgrounds. We believe that multivariate analysis techniques have sufficient potential to warrant better dissemination. Researchers should be able to employ them in an informed and accessible manner. We therefore propose a series of studies comparing multivariate approaches amongst each other and with traditional univariate approaches in dyadic reports and comprehensive review papers. For these studies we will use computer simulations as well as real-world neuroscience data sets. We will also extend and develop our own covariance approach further to enable adequate treatment of parametric within-subjects experimental designs and group-differences in one analysis step. Finally, we will provide a software analysis package that will integrate the most common features of multivariate approaches in a user-friendly manner.
描述(由申请人提供):随着临床和认知神经科学的成熟,对复杂的神经成像分析的需求变得更加明显。 多元分析技术最近受到越来越多的关注。 多变量技术有许多吸引人的功能,不能很容易地实现更常用的单变量,体素,技术。 多变量方法评估跨大脑区域的激活的相关性/协方差,而不是在逐体素的基础上进行。 因此,他们的结果可以更容易地解释为神经网络的签名。 另一方面,单变量方法不能直接解决大脑中的功能连接。 与单变量技术相比,协方差方法还可以产生更大的统计功效,单变量技术被迫采用非常严格且通常过于保守的校正用于逐体素多重比较。 多变量技术也更适合于将一个数据集的分析结果应用于全新的数据集。 因此,多变量技术可以很好地提供有关平均差异和与行为相关性的信息,类似于单变量方法,具有潜在的更大的统计功效和更好的再现性检查。 与这些优势形成对比的是,使用多元方法的门槛很高,阻碍了在社区中的更广泛应用。 对于熟悉多变量分析技术的神经科学家来说,对该领域的初步调查可能会呈现出令人困惑的各种方法,尽管算法相似,但通常由具有数学背景的人提出不同的重点。 我们相信,多变量分析技术有足够的潜力,保证更好的传播。 研究人员应能够以知情和无障碍的方式使用这些工具。 因此,我们提出了一系列的研究,相互之间的多变量方法,并与传统的单变量方法在二元报告和全面的综述论文进行比较。 对于这些研究,我们将使用计算机模拟以及真实世界的神经科学数据集。 我们还将进一步扩展和开发我们自己的协方差方法,以便在一个分析步骤中充分处理参数受试者内实验设计和组间差异。 最后,我们将提供一个软件分析包,它将以用户友好的方式集成多变量方法的最常见功能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christian Georg Habeck其他文献

Christian Georg Habeck的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christian Georg Habeck', 18)}}的其他基金

Exploring Cognitive Aging Using Refernce Ability Neural Networks
使用参考能力神经网络探索认知老化
  • 批准号:
    9177188
  • 财政年份:
    2011
  • 资助金额:
    $ 29.02万
  • 项目类别:
Exploring Cognitive Aging Using Reference Ability Neural Networks
使用参考能力神经网络探索认知老化
  • 批准号:
    10645084
  • 财政年份:
    2011
  • 资助金额:
    $ 29.02万
  • 项目类别:
Exploring Cognitive Aging Using Reference Ability Neural Networks
使用参考能力神经网络探索认知老化
  • 批准号:
    10470092
  • 财政年份:
    2011
  • 资助金额:
    $ 29.02万
  • 项目类别:
Early AD Detection with ASL MRI & Covariance Analysis
使用 ASL MRI 进行早期 AD 检测
  • 批准号:
    7491027
  • 财政年份:
    2007
  • 资助金额:
    $ 29.02万
  • 项目类别:
Early AD Detection with ASL MRI & Covariance Analysis
使用 ASL MRI 进行早期 AD 检测
  • 批准号:
    7144095
  • 财政年份:
    2007
  • 资助金额:
    $ 29.02万
  • 项目类别:
Multivariate approaches to neuroimaging analysis
神经影像分析的多变量方法
  • 批准号:
    7564716
  • 财政年份:
    2007
  • 资助金额:
    $ 29.02万
  • 项目类别:
Multivariate approaches to neuroimaging analysis
神经影像分析的多变量方法
  • 批准号:
    7383849
  • 财政年份:
    2007
  • 资助金额:
    $ 29.02万
  • 项目类别:
Early AD Detection with ASL MRI & Covariance Analysis
使用 ASL MRI 进行早期 AD 检测
  • 批准号:
    8092768
  • 财政年份:
    2007
  • 资助金额:
    $ 29.02万
  • 项目类别:
Early AD Detection with ASL MRI & Covariance Analysis
使用 ASL MRI 进行早期 AD 检测
  • 批准号:
    7632173
  • 财政年份:
    2007
  • 资助金额:
    $ 29.02万
  • 项目类别:
Early AD Detection with ASL MRI & Covariance Analysis
使用 ASL MRI 进行早期 AD 检测
  • 批准号:
    7874469
  • 财政年份:
    2007
  • 资助金额:
    $ 29.02万
  • 项目类别:

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Teachers' decision-making process: Computational and neuroimaging approaches
教师的决策过程:计算和神经影像方法
  • 批准号:
    23KJ1861
  • 财政年份:
    2023
  • 资助金额:
    $ 29.02万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Conceptual Models of Childhood Adversity: Multivariate and Neural Approaches
童年逆境的概念模型:多元和神经方法
  • 批准号:
    10827162
  • 财政年份:
    2023
  • 资助金额:
    $ 29.02万
  • 项目类别:
Interdisciplinary approaches for understanding how arsenic and micronutrients affect the epigenome to influence spina bifida risk
了解砷和微量营养素如何影响表观基因组以影响脊柱裂风险的跨学科方法
  • 批准号:
    10560333
  • 财政年份:
    2023
  • 资助金额:
    $ 29.02万
  • 项目类别:
Novel spatial-motor approaches targeting post-stroke spatial neglect and gait deficits
针对中风后空间忽视和步态缺陷的新型空间运动方法
  • 批准号:
    10606908
  • 财政年份:
    2023
  • 资助金额:
    $ 29.02万
  • 项目类别:
Neuroimaging approaches to improve prediction of smoking initiation and nicotine use escalation among young adult electronic nicotine delivery systems users
神经影像学方法可改善年轻成人电子尼古丁输送系统用户吸烟开始和尼古丁使用升级的预测
  • 批准号:
    10896832
  • 财政年份:
    2023
  • 资助金额:
    $ 29.02万
  • 项目类别:
Mass Multivariate Derivation and Validation of AUD Biotypes using Developmental Imaging and Genomic Approaches
使用发育成像和基因组方法对 AUD 生物型进行大规模多变量推导和验证
  • 批准号:
    10429020
  • 财政年份:
    2022
  • 资助金额:
    $ 29.02万
  • 项目类别:
Classification of Stroke Etiology Using Advanced Computational Approaches
使用先进计算方法对中风病因进行分类
  • 批准号:
    10371559
  • 财政年份:
    2022
  • 资助金额:
    $ 29.02万
  • 项目类别:
Statistical approaches to improving functional connectivity estimates with an application to autism
改善功能连接估计的统计方法及其在自闭症中的应用
  • 批准号:
    10598631
  • 财政年份:
    2022
  • 资助金额:
    $ 29.02万
  • 项目类别:
Reliable and robust causal inference approaches for effective connectivity research with fMRI data
可靠且稳健的因果推理方法,可利用功能磁共振成像数据进行有效的连通性研究
  • 批准号:
    10709066
  • 财政年份:
    2022
  • 资助金额:
    $ 29.02万
  • 项目类别:
Innovative biostatistical approaches to network level analyses of connectome-behavior relationships
连接组-行为关系网络级分析的创新生物统计方法
  • 批准号:
    10700129
  • 财政年份:
    2022
  • 资助金额:
    $ 29.02万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了