Novel Statistical Methods for Data with Missing Values
缺失值数据的新统计方法
基本信息
- 批准号:7237205
- 负责人:
- 金额:$ 15.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-06-01 至 2010-05-31
- 项目状态:已结题
- 来源:
- 关键词:AIDS/HIV problemAddressAgeCase-Control StudiesChicagoClinical TrialsComplexComputer softwareCox ModelsDataData AnalysesData SetDependenceDiseaseDisease regressionEventFractureGoalsHIVHIV InfectionsHealthHip FracturesIllinoisIncidenceInternetLiteratureLogistic RegressionsMalignant NeoplasmsMedicineMethodsModelingMusNumbersObservational StudyOdds RatioOutcomes ResearchPatternPerformancePliabilityProceduresProcessPropertyRaceRelative (related person)ResearchResearch PersonnelResearch Project GrantsRisk EstimateRisk FactorsRobin birdStatistical MethodsStatistical ModelsStudy modelsSurvival AnalysisUniversitiesVeteransbasecollegecomputer programcomputerized data processingleukemiamalenovelprogramssimulationuser friendly software
项目摘要
DESCRIPTION (provided by applicant): Missing covariate values are common in studies of risk factors of diseases and in many other biomedical studies. Simple complete-case analysis which is routinely used suffers from bias in addition to efficiency loss. Current advanced statistical methods for analyzing such data have limited usage in practice because of the robust concern, or the difficulty in implementation, or both. This project aims at developing new statistical methods for modeling missing covariates in regression models to make inferences on regression parameters with missing covariates robust, efficient, and easy to implement. The objective is to be reached through four steps: (1) A general semi-parametric odds ratio model is proposed for complex missing data problems. The proposed model makes the likelihood approach commonly used in practice more robust and flexible, and easy to apply. (2) The likelihood method for regression with missing data is further robustified in three ways. When missing patterns are relatively simple, smoothing spline models for odds ratio function is proposed; When missing patterns are complex, likelihood estimator is modified to be doubly robust and locally efficient; A framework is proposed for sensitivity analysis with general missing data mechanisms. (3) For problems with a large number of covariates subject to missing values, model selection procedures are studied based on imputed complete data under the semiparametric covariate model. Such procedures can be very helpful in studying risk factors of health events, such as in identifying risk factors of bone fracture from a set of potential risk factors subject to missing values. (4) For all the missing data problems under consideration, software for implementing methods of the research outcomes will be developed and disseminated. The proposed research, when completed, will make analyses of biomedical data with missing covariate values more accessible to researchers in many applied fields and thus promote efficient use of valuable data, such as those from HIV and cancer studies.
描述(由申请人提供):协变量值缺失在疾病危险因素研究和许多其他生物医学研究中很常见。常规使用的简单完整案例分析除了效率损失之外还存在偏差。当前用于分析此类数据的先进统计方法在实践中的使用有限,因为存在强烈的担忧或实施困难,或两者兼而有之。该项目旨在开发新的统计方法,用于对回归模型中缺失的协变量进行建模,以对缺失协变量的回归参数进行鲁棒、高效且易于实施的推断。该目标通过四个步骤来实现:(1)针对复杂的缺失数据问题提出通用的半参数优势比模型。所提出的模型使得实践中常用的似然方法更加稳健、灵活,并且易于应用。 (2) 缺失数据回归的似然法通过三种方式进一步增强。当缺失模式相对简单时,提出了优势比函数的平滑样条模型;当缺失模式复杂时,似然估计器被修改为双鲁棒性和局部高效性;提出了一个利用一般缺失数据机制进行敏感性分析的框架。 (3)对于存在大量协变量缺失值的问题,研究了半参数协变量模型下基于估算完整数据的模型选择程序。此类程序对于研究健康事件的风险因素非常有帮助,例如从一组受缺失值影响的潜在风险因素中识别骨折的风险因素。 (4)针对所有正在考虑的缺失数据问题,将开发并传播研究成果实施方法的软件。拟议的研究完成后,将使许多应用领域的研究人员更容易对缺少协变量值的生物医学数据进行分析,从而促进有效利用有价值的数据,例如来自艾滋病毒和癌症研究的数据。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Estimation and inference based on Neumann series approximation to locally efficient score in missing data problems.
- DOI:10.1111/j.1467-9469.2009.00646.x
- 发表时间:2009-12-01
- 期刊:
- 影响因子:0
- 作者:Chen HY
- 通讯作者:Chen HY
Multiple imputation for missing values through conditional Semiparametric odds ratio models.
- DOI:10.1111/j.1541-0420.2010.01538.x
- 发表时间:2011-09
- 期刊:
- 影响因子:1.9
- 作者:Chen HY;Xie H;Qian Y
- 通讯作者:Qian Y
On L convergence of Neumann series approximation in missing data problems.
缺失数据问题中诺依曼级数逼近的L收敛性。
- DOI:10.1016/j.spl.2010.01.021
- 发表时间:2010
- 期刊:
- 影响因子:0.8
- 作者:Chen,HuaYun
- 通讯作者:Chen,HuaYun
Representations of efficient score for coarse data problems based on Neumann series expansion.
- DOI:10.1007/s10463-009-0231-7
- 发表时间:2011-06-01
- 期刊:
- 影响因子:1
- 作者:Chen, Hua Yun
- 通讯作者:Chen, Hua Yun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HUA YUN CHEN其他文献
HUA YUN CHEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HUA YUN CHEN', 18)}}的其他基金
Innovative Methodologic Advances for Mixtures Research in Epidemiology
流行病学混合物研究的创新方法进展
- 批准号:
10087927 - 财政年份:2018
- 资助金额:
$ 15.39万 - 项目类别:
Novel Statistical Methods for Data with Missing Values
缺失值数据的新统计方法
- 批准号:
7072231 - 财政年份:2005
- 资助金额:
$ 15.39万 - 项目类别:
Novel Statistical Methods for Data with Missing Values
缺失值数据的新统计方法
- 批准号:
6986543 - 财政年份:2005
- 资助金额:
$ 15.39万 - 项目类别:
A Multivariate Probit Model for Health Services Research
卫生服务研究的多元概率模型
- 批准号:
6820885 - 财政年份:2004
- 资助金额:
$ 15.39万 - 项目类别:
A Multivariate Probit Model for Health Services Research
卫生服务研究的多元概率模型
- 批准号:
6925409 - 财政年份:2004
- 资助金额:
$ 15.39万 - 项目类别:
A Multivariate Probit Model for Health Services Research
卫生服务研究的多元概率模型
- 批准号:
7062106 - 财政年份:2004
- 资助金额:
$ 15.39万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 15.39万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 15.39万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 15.39万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 15.39万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 15.39万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 15.39万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 15.39万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 15.39万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 15.39万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 15.39万 - 项目类别:
Research Grant