Targets in Mycobacterium Tuberculosis: Stress Resistance & Repair

结核分枝杆菌的目标:抗应激性

基本信息

  • 批准号:
    7193519
  • 负责人:
  • 金额:
    $ 83.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-06-01 至 2010-02-28
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): M. tuberculosis (Mtb), a global health crisis and bioterrorism threat, is increasingly drug-resistant, but little new chemotherapy has emerged in decades. A fresh approach to chemotherapy is to target pathways essential for the pathogen to survive in its metabolic niche in host macrophages. This application is based on the hypothesis that Mtb requires 3 enzymes to survive under energy-poor, oxidative and nitrosative conditions in the phagosome: (1) Lipoamide dehydrogenase (Lpd) serves in pyruvate dehydrogenase and probably in branched chain ketoacid dehydrogenase as well as in peroxynitrite reductase /peroxidase and thus is key for net synthesis of acyl CoA's, the precursors of fatty acids, and for resistance to reactive nitrogen intermediates (RNI). (2) a-ketoglutarate (KG) decarboxylase (KDC) converts KG to succinic semialdehyde (SSA), replacing KG dehydrogenase, which Mtb lacks. SSA dehydrogenase converts SSA to succinate and may thereby connect the oxidative and reductive limbs of Mtb's citric acid cycle (CAC). KDC may therefore be important for Mtb's generation of energy, reducing equivalents, amino acids and heme. (3) Ultraviolet repair (Uvr) B, part of the nucleotide excision repair pathway, was found by saturation transposon mutagenesis to be essential for Mtb to survive RNI and to kill mice. KDC and UvrB lack human homologs, and Lpd's crystal structure shows key differences from the human enzyme. We will use allelic replacement to disrupt the 3 genes encoding these enzymes, or establish their essentiality; use conventional and novel combinatorial libraries to identify chemical inhibitors of each enzyme; analyze the crystal structures of Lpd and KDC with and without inhibitors; and assess these enzymes as potential targets for new chemotherapeutics. Antibiotics to date only target enzymes that synthesize protein, nucleic acids, cell walls and folate. The fundamental novelty of this work is to broaden the range of targets to include enzymes of intermediary metabolism and DNA repair.
描述(由申请人提供):M。结核病(Mtb)是一个全球性的健康危机和生物恐怖主义威胁,它的耐药性越来越强,但几十年来几乎没有新的化疗方法出现。一种新的化疗方法是针对病原体在宿主巨噬细胞中的代谢生态位中生存所必需的途径。该应用基于Mtb需要3种酶在吞噬体中的能量贫乏、氧化和亚硝化条件下存活的假设:(1)脂酰胺脱氢酶(Lpd)在丙酮酸脱氢酶中起作用,并且可能在支链酮酸脱氢酶以及过氧亚硝酸盐还原酶/过氧化物酶中起作用,因此是脂肪酸前体酰基CoA净合成的关键,以及对活性氮中间体(RNI)的抗性。(2)α-酮戊二酸(KG)脱羧酶(KDC)将KG转化为琥珀酸半醛(SSA),取代Mtb缺乏的KG脱氢酶。SSA脱氢酶将SSA转化为琥珀酸,从而连接结核分枝杆菌柠檬酸循环(CAC)的氧化和还原分支。因此,KDC可能对Mtb产生能量、还原当量、氨基酸和血红素很重要。(3)紫外线修复(Uvr)B,核苷酸切除修复途径的一部分,发现通过饱和转座子诱变是必不可少的Mt B生存RNI和杀死小鼠。KDC和UvrB缺乏人类同源物,Lpd的晶体结构显示出与人类酶的关键差异。我们将使用等位基因替换来破坏编码这些酶的3个基因,或建立它们的必要性;使用常规和新型组合文库来鉴定每种酶的化学抑制剂;分析有和没有抑制剂的LPD和KDC的晶体结构;并评估这些酶作为新化疗药物的潜在靶点。迄今为止,抗生素只针对合成蛋白质、核酸、细胞壁和叶酸的酶。这项工作的基本新奇是扩大了目标范围,包括中间代谢和DNA修复的酶。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

CARL Francis NATHAN其他文献

CARL Francis NATHAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('CARL Francis NATHAN', 18)}}的其他基金

Mechanisms of macrophage death co-dependent on M. tuberculosis and IFN-a,b receptor
结核分枝杆菌和 IFN-a、b 受体共同依赖的巨噬细胞死亡机制
  • 批准号:
    10725738
  • 财政年份:
    2023
  • 资助金额:
    $ 83.19万
  • 项目类别:
Tri-Institutional TRAC Developmental Core
三机构 TRAC 发展核心
  • 批准号:
    10675733
  • 财政年份:
    2022
  • 资助金额:
    $ 83.19万
  • 项目类别:
Tri-Institutional TRAC Developmental Core
三机构 TRAC 发展核心
  • 批准号:
    10430739
  • 财政年份:
    2022
  • 资助金额:
    $ 83.19万
  • 项目类别:
Transmission Aerobiology of M. tuberculosis: Genes and Metabolic Pathways That Sustain Mtb Across an Evolutionary Bottleneck
结核分枝杆菌的传播空气生物学:跨越进化瓶颈维持结核分枝杆菌的基因和代谢途径
  • 批准号:
    10682926
  • 财政年份:
    2021
  • 资助金额:
    $ 83.19万
  • 项目类别:
Transmission Aerobiology of M. tuberculosis: Genes and Metabolic Pathways That Sustain Mtb Across an Evolutionary Bottleneck
结核分枝杆菌的传播空气生物学:跨越进化瓶颈维持结核分枝杆菌的基因和代谢途径
  • 批准号:
    10610915
  • 财政年份:
    2021
  • 资助金额:
    $ 83.19万
  • 项目类别:
Project 1: Transmission Biology of M. tuberculosis: Genes Required to Survive Stressful Transitions
项目 1:结核分枝杆菌的传播生物学:应激过渡所需的基因
  • 批准号:
    10404530
  • 财政年份:
    2021
  • 资助金额:
    $ 83.19万
  • 项目类别:
Project 1: Transmission Biology of M. tuberculosis: Genes Required to Survive Stressful Transitions
项目 1:结核分枝杆菌的传播生物学:应激过渡所需的基因
  • 批准号:
    10190649
  • 财政年份:
    2021
  • 资助金额:
    $ 83.19万
  • 项目类别:
Transmission Aerobiology of M. tuberculosis: Genes and Metabolic Pathways That Sustain Mtb Across an Evolutionary Bottleneck
结核分枝杆菌的传播空气生物学:跨越进化瓶颈维持结核分枝杆菌的基因和代谢途径
  • 批准号:
    10404527
  • 财政年份:
    2021
  • 资助金额:
    $ 83.19万
  • 项目类别:
Project 1: Transmission Biology of M. tuberculosis: Genes Required to Survive Stressful Transitions
项目 1:结核分枝杆菌的传播生物学:应激过渡所需的基因
  • 批准号:
    10610920
  • 财政年份:
    2021
  • 资助金额:
    $ 83.19万
  • 项目类别:
Transmission Aerobiology of M. tuberculosis: Genes and Metabolic Pathways That Sustain Mtb Across an Evolutionary Bottleneck
结核分枝杆菌的传播空气生物学:跨越进化瓶颈维持结核分枝杆菌的基因和代谢途径
  • 批准号:
    10190646
  • 财政年份:
    2021
  • 资助金额:
    $ 83.19万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了